Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 15CQ
To determine
The shear stress on the grain boundaries of a rotating turbine blade with grain boundaries aligned parallel to blade axis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A single zinc crystal is loaded in tension with the normal to its slip plane at 60° to the
tensile axis and the slip direction at 40° to the tensile axis.
a) Calculate the resolved shear stress when a tensile stress of0.69 MPa is applied.
b) What tensile stress is necessary to reach the critical resolved shear stress of 0.94 MPa?
Briefly explain the (a) how and (b) why the size of elastic deformation changes as the thickness of the specimen increases when a rod-shaped specimen made of the same material is bent.
At an axial load of 20 kN, a 35-mm-wide by 10-mm-thick polyimide polymer bar elongates 2.7 mm while the bar width contracts 0.15 mm. The bar is 240 mm long. At the 20-kN load, the stress in the polymer bar is less than its proportional limit.Determine(a) the modulus of elasticity.(b) Poisson’s ratio.(c) the change in the bar thickness.
Chapter 9 Solutions
Materials Science And Engineering Properties
Ch. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - Prob. 4CQCh. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - Prob. 8CQCh. 9 - Prob. 9CQCh. 9 - Prob. 10CQ
Ch. 9 - Prob. 11CQCh. 9 - Prob. 12CQCh. 9 - Prob. 13CQCh. 9 - At temperatures above the equi-cohesive...Ch. 9 - Prob. 15CQCh. 9 - Prob. 16CQCh. 9 - Prob. 17CQCh. 9 - Prob. 18CQCh. 9 - Prob. 19CQCh. 9 - Prob. 20CQCh. 9 - Prob. 21CQCh. 9 - Prob. 22CQCh. 9 - Prob. 23CQCh. 9 - Prob. 24CQCh. 9 - Prob. 25CQCh. 9 - Prob. 26CQCh. 9 - Prob. 27CQCh. 9 - Prob. 28CQCh. 9 - Prob. 29CQCh. 9 - Prob. 30CQCh. 9 - Prob. 31CQCh. 9 - Prob. 32CQCh. 9 - Prob. 33CQCh. 9 - Prob. 34CQCh. 9 - Prob. 35CQCh. 9 - Prob. 1ETSQCh. 9 - Prob. 2ETSQCh. 9 - Prob. 3ETSQCh. 9 - Prob. 4ETSQCh. 9 - Prob. 5ETSQCh. 9 - Prob. 6ETSQCh. 9 - Prob. 7ETSQCh. 9 - Prob. 8ETSQCh. 9 - Prob. 9ETSQCh. 9 - Prob. 10ETSQCh. 9 - Prob. 11ETSQCh. 9 - Prob. 12ETSQCh. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - Prob. 9.4PCh. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - Prob. 9.10PCh. 9 - For silver at a tensile stress of 7 MPa and a...Ch. 9 - For germanium at a tensile stress of 410 MPa and a...Ch. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22P
Knowledge Booster
Similar questions
- At temperatures above the equi-cohesive temperature, the creep mechanism of grain boundary ____________ is observed.arrow_forwardAt an axial load of 25 kN, a 50-mm-wide by 15-mm-thick polyimide polymer bar elongates 3.1 mm while the bar width contracts 0.26 mm. The bar is 220 mm long. At the 25-kN load, the stress in the polymer bar is less than its proportional limit Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E- (b) v- (c) Audness GPa mmarrow_forwardA plate in equilibrium is subjected to uniform stresses along its edges with magnitude o = 30 %3D MPa and ow = 50 MPa as shown in the figure. %3D = 50 MPa %3D O = 30 MPa XX ple The Young's modulus of the material is 2 x 1011 N/m2 and the Poisson's ratio is 0.3. If o is negligibly small and assumed to be zero, then the strain Ezz isarrow_forward
- At an axial load of 22 kN, a 15-mm-thick x 35-mm-wide polyimide polymer bar elongates 4.2 mm while the bar width contracts 0.25 mm. The bar is 215-mm long. At the 22-kN load, the stress in the polymer bar is less than its proportional limit. Determine Poisson's ratio. O 0.366 O 0.336 EBA O 0.473 O 0.229 O 0.427arrow_forwardA single crystal of a metal is oriented for a tensile test such that its slip plane normal makes an angle of 64.0° with the tensile axis. Three possible slip directions make angles of 30°, 48°, and 78° with the same tensile axis. (a) Which of these three slip directions is most favored? i (b) If plastic deformation begins at a tensile stress of 1.3 MPa (188.6 psi), determine the critical resolved shear stress for this metal. i MPаarrow_forward(a) Illustrate a typical stress-strain curve for brittle and ductile materials.arrow_forward
- A thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?arrow_forwardA cylindrical specimen of cold-worked steel has a Brinell hardness of 240. If the specimen remained cylindrical during deformation and its original radius was 11.8 mm, determine its radius after deformation. For steel, the dependence of tensile strength on percent cold work is shown in Animated Figure 7.19b. i mmarrow_forward6. Derive the resolved shear stress(RSS) equation for dislocation at an arbitrary plane at angle (e) with horizontal under nominal axial tensile stress(o) and plot the variation of Schmidt factor witharrow_forward
- 1. Calculate the strain at the centroid of the tension steel in single layer if the effective depth is 250 mm and the depth of neutral axis is 100 mm. answer: 0.0045 2. Calculate the strain at extreme layer of steel if fy=415 MPa and the strength reduction factor is 0.80. answer: 0.0038arrow_forwardAt an axial load of 22 kN, a 15-mm-thick x 45-mm-wide polyimide polymer bar elongates 3.9 mm while the bar width contracts 0.25 mm. The bar is 265-mm long. At the 22-kN load, the stress in the polymer bar is less than its proportional limit. Determine Poisson's ratio. O 0.237 O 0.483 O 0.434 O 0.377 O 0.352arrow_forward6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning