Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.10P
To determine
The primary creep
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i need the answer quickly
1. Calculate the strain at the centroid of the tension steel in single layer if the effective depth is 250 mm and the depth of neutral axis is 100 mm.
answer: 0.0045
2. Calculate the strain at extreme layer of steel if fy=415 MPa and the strength reduction factor is 0.80.
answer: 0.0038
(a) Illustrate a typical stress-strain curve for brittle and ductile materials.
Chapter 9 Solutions
Materials Science And Engineering Properties
Ch. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - Prob. 4CQCh. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - Prob. 8CQCh. 9 - Prob. 9CQCh. 9 - Prob. 10CQ
Ch. 9 - Prob. 11CQCh. 9 - Prob. 12CQCh. 9 - Prob. 13CQCh. 9 - At temperatures above the equi-cohesive...Ch. 9 - Prob. 15CQCh. 9 - Prob. 16CQCh. 9 - Prob. 17CQCh. 9 - Prob. 18CQCh. 9 - Prob. 19CQCh. 9 - Prob. 20CQCh. 9 - Prob. 21CQCh. 9 - Prob. 22CQCh. 9 - Prob. 23CQCh. 9 - Prob. 24CQCh. 9 - Prob. 25CQCh. 9 - Prob. 26CQCh. 9 - Prob. 27CQCh. 9 - Prob. 28CQCh. 9 - Prob. 29CQCh. 9 - Prob. 30CQCh. 9 - Prob. 31CQCh. 9 - Prob. 32CQCh. 9 - Prob. 33CQCh. 9 - Prob. 34CQCh. 9 - Prob. 35CQCh. 9 - Prob. 1ETSQCh. 9 - Prob. 2ETSQCh. 9 - Prob. 3ETSQCh. 9 - Prob. 4ETSQCh. 9 - Prob. 5ETSQCh. 9 - Prob. 6ETSQCh. 9 - Prob. 7ETSQCh. 9 - Prob. 8ETSQCh. 9 - Prob. 9ETSQCh. 9 - Prob. 10ETSQCh. 9 - Prob. 11ETSQCh. 9 - Prob. 12ETSQCh. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - Prob. 9.4PCh. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - Prob. 9.10PCh. 9 - For silver at a tensile stress of 7 MPa and a...Ch. 9 - For germanium at a tensile stress of 410 MPa and a...Ch. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- For silver at a tensile stress of 7 MPa and a temperature of 839C , there are two equally contributing creep mechanisms. What are they?arrow_forwardFor germanium at a tensile stress of 410 MPa and a temperature of 332C , what is the primary creep mechanism? The shear modulus of germanium is 41 GPa.arrow_forward6. Steady-state creep rate data are given below for nickel at 1000°C (1273 K). If it is known that the activation energy for creep is 272,000 J/mol, compute the steady-state creep rate at a temperature of 850°C (1123 K) and a stress level of 25 MPa (3625 psi). o[MPa (psi)] 10 15 (2175) 10 4.5 (650)arrow_forward
- A thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?arrow_forwardQuestion prestress.arrow_forwardAt an axial load of 25 kN, a 50-mm-wide by 15-mm-thick polyimide polymer bar elongates 3.1 mm while the bar width contracts 0.26 mm. The bar is 220 mm long. At the 25-kN load, the stress in the polymer bar is less than its proportional limit Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E- (b) v- (c) Audness GPa mmarrow_forward
- Niloarrow_forwardA cylindrical metal specimen 12.7 mm (0.5 in.) in diameter and 250 mm (10 in.) long is to be subjected to a tensile stress of 28 MPa (4000 psi); at this stress level, the resulting deformation will be totally elastic. (a) If the elongation must be less than 0.080 mm (3.2 x 10-3 in.), which of the metals in Table 6.1 are suitable candidates? O Steel O Nickel Brass O Magnesium O Aluminum O Copper O Titanium O Tungsten (b) If, in addition, the maximum permissible diameter decrease is 1.2 x 103 mm (4.7 × 105 in.) when the tensile stress of 28 MPa is applied, which of the metals that satisfy the criterion in part (a) are suitable candidates? O Aluminum O Magnesium O Steel O Tungsten O Copper O Brass O Titanium O Nickelarrow_forwardAt an axial load of 20 kN, a 45-mm-wide by 10-mm-thick polyimide polymer bar elongates 3.3 mm while the bar width contracts 0.21 mm. The bar is 240 mm long. At the 20-kN load, the stress in the polymer bar is less than its proportional limit. Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E= (b) v = (c) Athickness= i i i GPa mmarrow_forward
- At an axial load of 20 kN, a 35-mm-wide by 10-mm-thick polyimide polymer bar elongates 2.7 mm while the bar width contracts 0.15 mm. The bar is 240 mm long. At the 20-kN load, the stress in the polymer bar is less than its proportional limit.Determine(a) the modulus of elasticity.(b) Poisson’s ratio.(c) the change in the bar thickness.arrow_forwardWhat are the consequences of strain hardening on ductility? Discuss the influence of strain-hardening on fatigue behavior.arrow_forward2. Please estimate the number of cycles to failure of a steel specimen under tensile fatigue loading with the following parameters. The R ratio is 3, mean stress 200 MPa, yield strength 450 MPa, ultimate tensile strength 560 MPa, Young’s modulus 200 GPa, KIC = 140 MPa . Assume the initial crack length is 0.1 mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY