EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.8, Problem 133RP
Writing the first- and second-law relations and simplifying, obtain the reversible work relation for a closed system that exchanges heat with the surrounding medium at T0 in the amount of Q0 as well as a heat reservoir at TR in the amount of QR. (Hint: Eliminate Q0 between the two equations.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A fluid enters an apparatus at 480 ft/s, initially the pressureof the fluid is 120 psia, the specific volume of 5ft3/lb andthe internal energy is 383 BTU/lb. The fluid leaves theapparatus at 25psia, specific volume of 18 ft3/lb, an exitvelocity of 1200 ft/s and internal energy of 120 BTU/lb. Theheat radiation loss is 10 BTU/lb. Determine work steadyflow, WSF
In a closed system contains R-134a and it undergoes an isothermal process from state 1 to state 2. The initial tempetature and pressure of R-134a are 320 kPa and 400C respectively. The final quality of R-134a is 50 percent. Find the specific work and heat transfer during the isothermal process.
a) W = -27.65KJ/kg and q = -130.075 KJ/kg
b) W = -47.65KJ/kg and q = -13.075 KJ/kg
c) W = -47.65KJ/kg and q = -130.075 KJ/kg
d) W = -147.65KJ/kg and q = -10.075 KJ/kg
do it fast so that, I can rate you..
1. A heat pump design creates a heating effect of 35 kW while using 15 kW of electrical power.
wwww
wwwwn wwwww w
The thermal energy reservoirs are at 300 K and 250 K.
www ww
(a) Show the system sketch and label all the values given on it
ww www u w w
(b) Demonstrate the 1st law application for this system
(c) Find entropy generation
Chapter 8 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - Prob. 4PCh. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...Ch. 8.8 - Prob. 7PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 9PCh. 8.8 - 8–10C Can a process for which the reversible work...
Ch. 8.8 - 8–11C Consider a process during which no entropy...Ch. 8.8 - Prob. 12PCh. 8.8 - 8–13E Saturated stem is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - Prob. 15PCh. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - Prob. 21PCh. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 23PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Prob. 26PCh. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - Prob. 33PCh. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - Prob. 41PCh. 8.8 - Prob. 42PCh. 8.8 - Prob. 43PCh. 8.8 - Prob. 44PCh. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 48PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 55PCh. 8.8 - Prob. 56PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 58PCh. 8.8 - Prob. 59PCh. 8.8 - Prob. 60PCh. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Prob. 62PCh. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 64PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 66PCh. 8.8 - Prob. 67PCh. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - Prob. 73PCh. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - Prob. 76PCh. 8.8 - Prob. 77PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Prob. 79PCh. 8.8 - Prob. 80PCh. 8.8 - Prob. 81PCh. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - 8–83 Air enters a compressor at ambient conditions...Ch. 8.8 - Prob. 84PCh. 8.8 - Prob. 85PCh. 8.8 - Prob. 86RPCh. 8.8 - Prob. 87RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 89RPCh. 8.8 - Prob. 91RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Prob. 96RPCh. 8.8 - Prob. 97RPCh. 8.8 - Prob. 98RPCh. 8.8 - Prob. 99RPCh. 8.8 - Prob. 100RPCh. 8.8 - Prob. 101RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - Prob. 112RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 114RPCh. 8.8 - Prob. 115RPCh. 8.8 - Prob. 116RPCh. 8.8 - Prob. 117RPCh. 8.8 - Prob. 118RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 121RPCh. 8.8 - Prob. 122RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Prob. 128RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 130RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 134RPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Prob. 139FEPCh. 8.8 - Prob. 140FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...Ch. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 145FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A compressor compresses the gas in a cylinder at a pressure of 2 Bar, Gas expands from 0.4 m to 0.5 m while pressure is constant. Find the work done of the compressor (a) and Find the sensible heat (b). removed to reduce the temperature of 5 kg of water from 20°C to 5°C, Specific heat capacity is 4.187 kJ/kg K. on Gparrow_forwardFind the magnitude of the work for the process ,ASAP in 20min i will upvotearrow_forward0.5 kg of Helium undergoes a cycle in a piston–cylinder assembly. Initial state: 2.2 MPa and 0.3 m3Process 1-2: adiabatic expansion to pressure P=750kPaProcess 2-3: isothermal compression to initial pressureProcess 3-1: isobaric process to initial state. Find the boundary work for process 1-2, 2-3 and 3-1.Determine the net work of the cycle.Sketch the cycle in a P-V diagram schematically This is a Thermodynamics question. Please explain all steps and write nicely. Thanks.arrow_forward
- A nitrogen gas goes through a polytropic process with n = 1.3 in a piston/cylinder arrangement. It starts out at 500 K, 500 kPa and ends at 800 K. Is the heat transfer positive, negative, or zero?arrow_forwardIn a closed container with a constant volume, there is air at a temperature of 300 K and a pressure of 150 kPa. 800 kj mixing work is being done from the environment to the cab and the container gives 100 kj heat to the environment.Since the volume of the cab is 3 m³ and the boundary temperature between the cab and the environment is 350, a) determine the final temperature of the air. b) find the amount of entropy produced in the state change as kj/K. Note: specific temperatures are constant.arrow_forwardA heat engine receives 5 kW at 800 K and 15 kW at 1000 K rejecting energy by heat transfer at 600 K. Assume it is reversible and find the power output, W.?arrow_forward
- imagine a heat machine that operates between two thermal reservoir T1<T2 ,the machine does a work in quantity W,and it exchange heat in quantity Q1 and Q2 with its reservoirs.( Note: this heat machine dose not have to be a carnot machine , only requirement is that it must be cyclical).under this circumstances,if the work is positive,prove that Q2>0 and Q1>0.arrow_forwardFind the efficiency of the Carnot heat engine operating between 427 C and 77 C.arrow_forward: Is perfect heat engine and perfect refrigerator exist in term of entropyarrow_forward
- If the container is placed in a colder environment, how will it affect the actual heat transfer and the irreversibility of the system?arrow_forwardA closed system undergoes a process in which work is done on the system and heat transfer occurs only at a location on the boundary where the temperature is Tb. Considering an adiabatic an internally reversible process, the system entropy change is O positive negative equal to zero O is not predictable from the info given.arrow_forwardSteam (P=100KPa, T=300 deg C, 3 kg) is in a well-insulated piston-cylinder device. The system is cooled (10,000 kJ removed) until all the water is a compressed liquid at 80 deg C. How much work was required (kJ)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license