EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.8, Problem 138FEP
A heat engine receives heat from a source at 1500 K at a rate of 600 kJ/s and rejects the waste heat to a sink at 300 K. If the power output of the engine is 400 kW, the second-law efficiency of this heat engine is
- (a) 42%
- (b) 53%
- (c) 83%
- (d) 67%
- (e) 80%
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A heat engine is operating on a Carnot cycle and has a thermal efficiency of 58.08 percent. The waste heat from this engine is rejected to a nearby lake at 63.48 F at a rate of 848.62 Btu/min. Determine the power output (hp) of the engine.
A heat engine operates between a source at 478.72 C and a sink at 26.12 C. If heat is supplied to the heat engine at a steady rate of 69,585.58 kJ/min, determine the maximum power output (kW) of this heat engine.
A cyclic heat engine does 50 kJ of work per cycle.
If the efficiency of the heat engine is 75%, the heat
rejected per cycle is
(a) 16.67 kJ
(c) 37.50 kJ
(b) 33.30 kJ
(d) 66.67 kJ
Chapter 8 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - Prob. 4PCh. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...Ch. 8.8 - Prob. 7PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 9PCh. 8.8 - 8–10C Can a process for which the reversible work...
Ch. 8.8 - 8–11C Consider a process during which no entropy...Ch. 8.8 - Prob. 12PCh. 8.8 - 8–13E Saturated stem is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - Prob. 15PCh. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - Prob. 21PCh. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 23PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Prob. 26PCh. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - Prob. 33PCh. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - Prob. 41PCh. 8.8 - Prob. 42PCh. 8.8 - Prob. 43PCh. 8.8 - Prob. 44PCh. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 48PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 55PCh. 8.8 - Prob. 56PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 58PCh. 8.8 - Prob. 59PCh. 8.8 - Prob. 60PCh. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Prob. 62PCh. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 64PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 66PCh. 8.8 - Prob. 67PCh. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - Prob. 73PCh. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - Prob. 76PCh. 8.8 - Prob. 77PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Prob. 79PCh. 8.8 - Prob. 80PCh. 8.8 - Prob. 81PCh. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - 8–83 Air enters a compressor at ambient conditions...Ch. 8.8 - Prob. 84PCh. 8.8 - Prob. 85PCh. 8.8 - Prob. 86RPCh. 8.8 - Prob. 87RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 89RPCh. 8.8 - Prob. 91RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Prob. 96RPCh. 8.8 - Prob. 97RPCh. 8.8 - Prob. 98RPCh. 8.8 - Prob. 99RPCh. 8.8 - Prob. 100RPCh. 8.8 - Prob. 101RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - Prob. 112RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 114RPCh. 8.8 - Prob. 115RPCh. 8.8 - Prob. 116RPCh. 8.8 - Prob. 117RPCh. 8.8 - Prob. 118RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 121RPCh. 8.8 - Prob. 122RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Prob. 128RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 130RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 134RPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Prob. 139FEPCh. 8.8 - Prob. 140FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...Ch. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 145FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Quickly please.arrow_forward(c) The structure of a house is such that it loses heat at a rate of 5400 kJ/h per °C difference between the indoors and outdoors. A heat pump that requires a power input of 6 kW is used to maintain this house temperature at 21°C. Examine the lowest outdoor temperature for which the heat pump can meet the heating requirements of this house and sketch a simple schematic diagram for the heat pump complete with the value of energy, its direction, and temperature reading of both indoors and outdoors.arrow_forwardA heat engine operates on the Carnot cycle, and has a thermal efficiency of 75 percent. The waste heat from this machine is rejected to a nearby lake at 15 ° C at the rate of 14 kW. Determine the power output of the motor and the temperature of the source, in ° C.arrow_forward
- A heat engine has a total heat input of 1.3 kJ and a thermal efficiency of 35 percent. How much work will it produce?arrow_forwardAn engineer, in his work on the heat engine, determined that the heat engine received 500 kJ of heat from a source at 700 K and converted 240 kJ to work and threw the rest into the heat well at 370 K. Do you think there are any errors in these calculations?arrow_forwardA Carnot heat pump is to be used to heat a house and maintain it at 25°C in winter. On a day when the average outdoor temperature remains at about 2°C, the house is estimatedto lose heat at a rate of 55 000 kJ/h. If the heat pump consumes 4.8 kW of power while operating, determine: (a). how long the heat pump ran on that day(b). The total heating costs, assuming an average price of R 2.35/kWh for electricity, and(c). The heating cost for the same day if resistance heating is used instead of a heat pump.arrow_forward
- A heat engine accepts heat from a source at a rate of 500 kW, and it rejects heat to a sink at a rate of 300 kW. The remainder of the heat is converted to net work output. Determine the thermal efficiency of the enginearrow_forwardConsider a Carnot refrigerator and a Carnot heat pump operating between the same two thermal energy reservoirs. If the COP of the refrigerator is 3.4 , the COP of the heat pump is?arrow_forwardA heat engine is operating on a Carnot cycle and has a thermal efficiency of 59.41 percent. The waste heat from this engine is rejected to a nearby lake at 62.67 F at a rate of 809.32 Btu/min. Determine the temperature (R) of the source. (Use 2 decimal places for the final answer.)arrow_forward
- A typical new household refrigerator consumes about 680 kWh of electricity per year and has a coefficient of performance of 1.4. The amount of heat removed by this refrigerator from the refrigerated space per year is (a) 952 MJ/yr (b) 1749 MJ/yr (c) 2448 MJ/yr (d) 3427 MJ/yr (e) 4048 MJ/yrarrow_forward6. A heat pump absorbs heat from the cold outdoors at 3°C and supplies heat to a house at 20°C at a rate of 30,000 kJ/h. If the power consumed by the heat pump is 3 kW, the coefficient of performance of the heat pump is (a) 0.36 (b) 1.18 (c) 16.2 (d) 2.78arrow_forward(d) A heat engine operates by taking heat from a thermal reservoir at 1000°C and rejecting heat to a thermal reservoir at 30°C. Is this heat engine reversible, irreversible, or impossible if it produces 800 kW of work and rejects 200 kW of heat to the low temperature reservoir? Support your answer with calculations.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY