
a)
The exit temperature
a)

Answer to Problem 105RP
The exit temperature is
Explanation of Solution
Write energy balance equation for a closed system of steam.
Here, temperature at inlet and outlet condition is
Write the expression for the dryness fraction at state 2
Here,
Write the expression of the internal energy at state 2
Write the expression of the entropy at state 2
Write the expression of the mass of steam
Here, initial volume of steam is
Write the expression of the mass of air
Here, initial temperature is
Write the expression of the amount of fan work done in 24 min.
Here, change in time is
Write the expression of energy balance equation for a closed system of air.
Here, amount of heat transfer injected to the steam radiator is
Conclusion:
From Table A-1, “molar mass, gas constant, and critical point properties”, Obtain the gas constant
From Table A-3, “properties of common liquids, solids, and foods”, Obtain the specific heat
From Table A-6E, “Superheated water”, at the pressure of
From to Table A-5, “saturated water – pressure table”, obtain the following properties at the pressure of
Substitute
Substitute 0.6376 for
Substitute 0.6376 for
Substitute
0.01388 kg for m,
Calculate the volume of air.
Substitute 283 K for
Substitute
Substitute 12.58 kJ for
Thus, the exit temperature is
b)
The entropy change of the steam.
b)

Answer to Problem 105RP
The entropy change of the steam is
Explanation of Solution
Write the expression the entropy change of the steam.
Conclusion:
Substitute 0.01388 kg for m,
Thus, the entropy change of the steam is
c)
The entropy change of the air
c)

Answer to Problem 105RP
The entropy change of the air is
Explanation of Solution
Write the expression for the entropy change of the air.
Conclusion:
Substitute 98.5 kg for
Thus, the entropy change of the air is
d)
The energy destroyed during the process
d)

Answer to Problem 105RP
The energy destroyed during the process is
Explanation of Solution
For a closed system, write the simplification rate form of the entropy balance for the room.
Here, entropy generation is
Calculate the energy destroyed during the process
Here, dead state temperature is
Conclusion:
Substitute
Substitute 283 K for
Thus, the energy destroyed during the process is
Want to see more full solutions like this?
Chapter 8 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- Saturated water vapor at 150°C is compressed in a reversible steady-flow device to 1150 kPa while its specific volume remains constant. Determine the work required in kJ/kg. Use steam tables. The work required is kJ/kg.arrow_forwardThree lbm of R-134a is expanded isentropically in a closed system from 100 psia and 100°F to 10 psia. Determine the total heat transfer and the work production for this process. Use the tables for R-134a. The total heat transfer is Btu. The work production for this process is Btu. Three lbm of R-134a is expanded isentropically in a closed system from 100 psia and 100°F to 10 psia. Determine the total heat transfer and the work production for this process. Use the tables for R-134a. The total heat transfer is Btu. The work production for this process is Btu.arrow_forwardOxygen at 300 kPa and 90°C flowing at an average velocity of 3 m/s is expanded in an adiabatic nozzle. What is the maximum velocity of the oxygen at the outlet of this nozzle when the outlet pressure is 60 kPa? Use the table containing the ideal gas specific heats of various common gases. The maximum velocity of the oxygen at the outlet of this nozzle is m/s.arrow_forward
- The well-insulated container shown in the given figure is initially evacuated. The supply line contains air that is maintained at 150 psia and 110°F. The valve is opened until the pressure in the container is the same as the pressure in the supply line. Determine the minimum temperature in the container when the valve is closed. Use the table containing the ideal gas specific heats of various common gases. A valve is shown at the vertical tube. The minimum temperature in the container when the valve is closed is °F.arrow_forwardDuring the isothermal heat addition process of a Carnot cycle, 1050 kJ of heat is added to the working fluid from a source at 400°C. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the total entropy change for the process. The total entropy change for the process is kJ/K.arrow_forwardQuestion 6 What kind of problem would arise if components of the strain tensor were defined as v Double counting of the normal strains. Strain discontinuity. Rotation would lead to a shear strain. Double counting of the shear strains.arrow_forward
- please show steps, thanksarrow_forwardYou design a pin joint. The pin is made of a material with the yield strength of 325 MPa and ultimate strength of 500 MPa. The maximum allowed stress in service is expressed as a tensor 0 100 0 σ 100 0 0 MPa 0 0 Evaluate the safety factor SF for stress in this design. Write answer unitless rounding to 2 decimal places and enter decimals even if those are zeros.arrow_forward2. A single crystal of aluminum is oriented for a tensile test such that its slip plane normal makes an angle of 28.1° with the tensile axis. Three possible slip directions make angles of 62.4°, 72.0°, and 81.1° with the same tensile axis. (a) Which of these three slip directions is most favored? (b) If plastic deformation begins at a tensile stress of σ x = 1.95 MPa (280 psi), determine the critical resolved shear stress for aluminium. (c) If this single crystalspecimen is loaded under the new stress state: σ x =1.2 MPa σ y = -0.8 MPa, and τ xy = 0.6 MPa, howmuch is the resolve the shear stress along the most favored slip direction?arrow_forward
- Please explain how to do each part and tell me if my drawing is correct. thank youarrow_forward4. Determine which of the following flow fields represent a possible incompressible flow? (a) u= x²+2y+z; v=x-2y+z;w= -2xy + y² + 2z a (b) V=U cose U coso 1 (9) [1-9] Usino |1 (4)] [+] V=-Usin 1+1arrow_forward3. Determine the flow rate through the pipe line show in the figure in ft³/s, and determine the pressures at A and C, in psi. 5' B C 12° 20' D 6"d 2nd- Water Aarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





