Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8.4, Problem 5E
Interpretation Introduction

Interpretation:

To show that the average equation for the system is r' = -12(kr + Fsinϕ),  ϕ' = - 18(4a - 3br24Frcosϕ) where x = r cos(t + ϕ), x˙ = -r sin(t + ϕ), and the prime denotes differentiation with respect to slow time T = εt as usual.

Concept Introduction:

  • ➢ Use average or slow time equation for the weekly nonlinear oscillator.

  • ➢ Determine r'  and  ϕ from the slow time equation.

Expert Solution & Answer
Check Mark

Answer to Problem 5E

Solution:

It is shown that the average equations for the system are

r' = -12(kr + Fsinϕ),  ϕ' = - 18(4a - 3br24Frcosϕ).

Explanation of Solution

The general equation of the weekly nonlinear oscillator is

x¨ + x + εh(x, x˙) = 0

The average or slow time equation is

r' =hsinθ =  12π02πh(θ)sinθ dθ

rϕ' =h cos θ =  12π02πh(θ) cos θ dθ

The equation for the forced Duffing oscillator in the limit where the forcing, detuning, damping is done all week is as below,

x¨ + x + ε(bx3+kx˙ - ax - Fcos t) = 0

Comparing the above equation with the general equation of the weekly nonlinear oscillator and

h(x, x˙) = (bx3+kx˙ - ax - Fcos t)

By substituting (θ - ϕ) for t

h(x, x˙) = (bx3+kx˙ - ax - Fcos (θ-ϕ))

Consider

x = r cosθ

By differentiating the above equation

x˙ = - r sin θ

h(x, x˙) = (b(rcosθ)3+k(- rsinθ) - a(rcosθ) - Fcos (θ-ϕ))

h(x, x˙) = b(rcosθ)3-krsinθ- arcosθ - Fcos (θ-ϕ)

The average or slow time equation is

r' =hsinθ =  12π02πh(θ)sinθ dθ

r' =h(x, x˙)sinθ =  12π02πh(x, x˙) sinθ dθ

r' =  12π02π(b(rcosθ)3-krsinθ- arcosθ - Fcos (θ-ϕ) sin θ dθ

r' = 12π02π(br3sin(θ)cos3(θ)- krsin2(θ)- ar sin(θ)cos(θ) - Fsin(θ)cos (θ-ϕ)

Using the identity cos (θ-ϕ) = cos (θ)cos (ϕ)+sin (θ)sin (ϕ)

r' = 12π02π{br3sin(θ)cos3(θ)- krsin2(θ)- ar sin(θ)cos(θ) - Fsin(θ)cos (θ)cos (ϕ)-Fsin2(θ)sin (ϕ)}

r' = 10br3sin(θ)cos3(θ)0krsin2(θ)                        -0ar sin(θ)cos(θ) dθ0 Fsin(θ)cos (θ)cos (ϕ) dθ0Fsin2(θ)sin (ϕ)dθ

By solving it,

r' =  -12(kr + Fsinϕ)

Similarly,

rϕ' =hcos θ =  12π02πh(θ) cos θ dθ

rϕ' =h(x, x˙) cos θ =  12π02πh(x, x˙) cos θ dθ

rϕ' =h(x, x˙) cos θ =  12π02π(bx3+kx˙ - ax - Fcos (θ-ϕ))cos θ dθ

By substituting x = r cosθ and x˙ = - r sin θ,

rϕ' =  12π02π(b(r cosθ)3+k(- r sin θ) - a(r cosθ) - Fcos (θ-ϕ))cos θ dθ

rϕ' =  12π02π(br3cos4(θ)-krsin (θ)cos(θ) - arcos2(θ) - Fcos2(θ)cos (ϕ)-Fcos(θ)sin (θ)sin (ϕ)) dθ

rϕ' =  12π{02π(br3cos4(θ)) dθ02π(krsin (θ)cos(θ) ) dθ02π(arcos2(θ) ) dθ               -02π( Fcos2(θ)cos (ϕ)) dθ02π(Fcos(θ)sin (θ)sin (ϕ)) dθ}

By solving it,

rϕ' = 38br312ar12Fcos(ϕ)

ϕ' = 38br212a12rFcos(ϕ)

 ϕ' = - 18(4a - 3br24Frcosϕ)

Conclusion

It is seen that the average equations for the system are

r' = -12(kr + Fsinϕ),  ϕ' = - 18(4a - 3br24Frcosϕ).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2) Find the general solution to the following differential equation. d²x dt² - dx 6 +25x = 64e¯* dt
1) Solve the following initial value problem. y' + xy = x y(0) = −1
Calculate gross pay for each employee. All are paid overtime wage rates that are 1.5 times their respective regular wage rates. should be rounded to two decimal places at each calculation.
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY