Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.3, Problem 3E
Interpretation Introduction
Interpretation:
To analyze the model for the chlorine dioxide-iodine-malonic acid oscillator for the system equations
Concept Introduction:
Chemical oscillator is an experimental type of the Hopf bifurcation in which the system is remarkable both for its spectacular behaviour and for the story behind its discovery.
If
If
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
3. Suppose a sinusoidal function was created to model a yearly lynx population, due to
a cyclical pattern of increasing and decreasing throughout each year.
This function can take the form of y = a cos[ b (x - c)] + d
Explain what the value of each parameter (a, b, c and d) would represent in the
real-life context of analyzing lynx populations.
If you were analyzing the function, consider what each parameter could tell you about
the population or the time of research.
-2m
2m
-2
Assume there is no phase shift.
Identify the basic function sec(x)
Stretching Factor:
Period:
7.
The number of visible sun spots varies rhythmically from 10
to 110 per year over a period of eleven years. The 110 max last
occurred in the year 2014.
a.)
b.)
Write a sinusoidal function N (t) to model that number of sun
spots per year, where t is in years past the year 2014.
What number of sun spots does your function predict for the
year 2018?
Chapter 8 Solutions
Nonlinear Dynamics and Chaos
Ch. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Prob. 3ECh. 8.1 - Prob. 4ECh. 8.1 - Prob. 5ECh. 8.1 - Prob. 6ECh. 8.1 - Prob. 7ECh. 8.1 - Prob. 8ECh. 8.1 - Prob. 9ECh. 8.1 - Prob. 10E
Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.3 - Prob. 1ECh. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.6 - Prob. 1ECh. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - Prob. 4ECh. 8.6 - Prob. 5ECh. 8.6 - Prob. 6ECh. 8.6 - Prob. 7ECh. 8.6 - Prob. 8ECh. 8.6 - Prob. 9ECh. 8.7 - Prob. 1ECh. 8.7 - Prob. 2ECh. 8.7 - Prob. 3ECh. 8.7 - Prob. 4ECh. 8.7 - Prob. 5ECh. 8.7 - Prob. 6ECh. 8.7 - Prob. 7ECh. 8.7 - Prob. 8ECh. 8.7 - Prob. 9ECh. 8.7 - Prob. 10ECh. 8.7 - Prob. 11ECh. 8.7 - Prob. 12E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- A population of animals oscillates between a low of 1100 on January 1 ( t = 0 ) and a high of 2000 on July 1 (t = 6 ). The population doesn't reach this high before July 1. (a) Find a formula for the population, P, in terms of the time, t, in months. Assume there is no phase shift. Use "pi" or symbol r to enter the n. P(t) = ? Edit (b) Interpret the amplitude, period, and midline of the function P = f(t). Amplitude = This is the amount that the population varies above and below the average population. Period = months. This means the cycle repeats annually.arrow_forwardThis problem is an example of critically damped harmonic motion. A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring feet. The ball is started in motion from the equilibrium position with a downward velocity of 5 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second). Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. Take as the gravitational acceleration 32 feet per second per second. (Note that the positive y direction is down in this problem.) y = learrow_forwardDetermine the phase shift of the function y = sin(x - π/3)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY