Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Videos

Question
Book Icon
Chapter 8.2, Problem 12E
Interpretation Introduction

Interpretation:

To calculate for the system x˙ = - y + xy2, y˙ = x + x2. If a < 0, the bifurcation is supercritical and if a > 0, the bifurcation is subcritical.

Concept Introduction:

Suppose we have a physical system that settles down to equilibrium through exponentially damped oscillations. Now suppose that the decay rate depends on a control parameter μ. If the decay becomes slower and slower and finally changes to growth at a critical value μc, the equilibrium state will lose stability. Then we say that the system has undergone a supercritical Hopf bifurcation.

A subcritical Hopf bifurcation occurs at μ = 0, where the unstable cycle shrinks to zero amplitude and engulfs the origin, rendering it unstable. For μ >0, the large-amplitude limit cycle is suddenly the only attractor in town. Solution that used to remain near the origin is now forced to grow into large-amplitude oscillation.

Blurred answer
Students have asked these similar questions
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT SOLVE BY HAND STEP BY STEP
pls help on all, inlcude all steps.
pls help on all, inlcude all steps.
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Minimum cuts and maximum flow rate; Author: Juddy Productions;https://www.youtube.com/watch?v=ylxhl1ipWss;License: Standard YouTube License, CC-BY