Concept explainers
Interpretation:
For
Concept Introduction:
Bifurcation is used to study the stability of the dynamical systems.
In pitchfork bifurcation, the fixed points appear and disappear in symmetrical pairs.
There are two types of pitchfork bifurcation. One is supercritical, and another is subcritical.
In supercriticalbifurcation, a stable fixed point is present, and after changing parameters, it becomes unstable, and two new symmetric unstable points generate.
In subcriticalbifurcation, an unstable fixed point is present, and after changing parameters, it becomes stable, and two new symmetric stable points generate.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Nonlinear Dynamics and Chaos
- PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT SOLVE BY HAND STEP BY STEParrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT SOLVE BY HAND STEP BY STEParrow_forward2.- Solve the following Homogeneous Differential Equation (xy + 3y²+x²)dx − (x² + 2xy)dy = 0 -arrow_forward
- show your answer in pen and paper Don't use any Al tool show ur answer in pe n and paper then take -2-i Evaluate f² (3xy + iy²)dz a) along the straight line joining from z = i to z = 2 - i Inspiring Excellence b) along the parabola from x = 2t - 2 and y = 1+t-t²arrow_forwardProve let Aand B submodul of M A is large sub podule A large of B and B large of M. SM B Smale sub module B/A smal of M/A and As Mallof M. Give example and expleain caim. Amonorphism and split d) Determine the following group: Hom, (Q,Z) and Ho M₂ (Q, Q) and Hom (2/12, Q) =arrow_forwardQ2: Using the Laplace transform, find the solution for the following equation y"" +y" = 6et + 6t + 6. Suppose zero initial conditions (y"" (0) = y"(0) = y'(0) = y(0) = 0).arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage