General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.95SP
Interpretation Introduction
Interpretation:
The possibility of an exothermic reaction being a spontaneous reaction has to be validated.
Concept Introduction:
- Spontaneous process has positive entropy value and negative free energy, enthalpy value.
- Non-spontaneous process tends to proceed with negative entropy value and positive free energy and enthalpy.
- A reaction which proceeds with absorption of heat is called endothermic reaction whereas a reaction which proceeds with release of heat is called exothermic reaction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
General Chemistry: Atoms First
Ch. 8.2 - Which of the following are state functions, and...Ch. 8.3 - Calculate the work in kilojoules done during a...Ch. 8.3 - How much work is done in kilojoules, and in which...Ch. 8.4 - The following reaction has E = 186 kJ/mol. (a) Is...Ch. 8.5 - Assuming that Coca Cola has the same specific heat...Ch. 8.5 - What is the specific heat of lead if it takes 97.2...Ch. 8.5 - When 25.0 mL of 1.0 M H2SO4 is added to 50.0 mL of...Ch. 8.6 - The reaction between hydrogen and oxygen to yield...Ch. 8.6 - The explosion of 2.00 mol of solid trinitrotoluene...Ch. 8.7 - How much heat in kilojoules is evolved or absorbed...
Ch. 8.7 - Nitromethane (CH3NO2), sometimes used as a fuel in...Ch. 8.8 - The industrial degreasing solvent methylene...Ch. 8.8 - The reaction of A with B to give D proceeds in two...Ch. 8.8 - Draw a Hesss law diagram similar to that in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.11 - Liquid butane (C4H10), the fuel used in many...Ch. 8.12 - Ethane, C2H6, can be prepared by the reaction of...Ch. 8.12 - Is the reaction represented in the following...Ch. 8.12 - Which of the following reactions are spontaneous...Ch. 8.12 - Is the Haber process for the industrial synthesis...Ch. 8.12 - The following reaction is exothermic: (a) Write a...Ch. 8.12 - Write balanced equations for the combustion...Ch. 8.12 - Biodiesel has a more favorable (more negative)...Ch. 8 - The following reaction is exothermic: (a) Write a...Ch. 8 - Imagine a reaction that results in a change in...Ch. 8 - Redraw the following diagram to represent the...Ch. 8 - Prob. 8.30CPCh. 8 - Prob. 8.31CPCh. 8 - A reaction is carried out in a cylinder fitted...Ch. 8 - The following drawing portrays a reaction of the...Ch. 8 - Prob. 8.34CPCh. 8 - The following reaction of A3 molecules is...Ch. 8 - Prob. 8.36SPCh. 8 - What is internal energy?Ch. 8 - Prob. 8.38SPCh. 8 - Assume that the kinetic energy of a 1400 kg car...Ch. 8 - Prob. 8.40SPCh. 8 - The addition of H2 to CC double bonds is an...Ch. 8 - Prob. 8.42SPCh. 8 - Prob. 8.43SPCh. 8 - Prob. 8.44SPCh. 8 - Prob. 8.45SPCh. 8 - Prob. 8.46SPCh. 8 - Does a measurement carried out in a bomb...Ch. 8 - Prob. 8.48SPCh. 8 - Prob. 8.49SPCh. 8 - Prob. 8.50SPCh. 8 - When 0.187 g of benzene, C6H6, is burned in a bomb...Ch. 8 - When a solution containing 8.00 g of NaOH in 50.0...Ch. 8 - Prob. 8.53SPCh. 8 - Prob. 8.54SPCh. 8 - Prob. 8.55SPCh. 8 - Prob. 8.56SPCh. 8 - Prob. 8.57SPCh. 8 - Prob. 8.58SPCh. 8 - Prob. 8.59SPCh. 8 - Prob. 8.60SPCh. 8 - Prob. 8.61SPCh. 8 - Used in welding metals, the reaction of acetylene...Ch. 8 - Prob. 8.63SPCh. 8 - The familiar ether used as an anesthetic agent is...Ch. 8 - How much energy in kilojoules is required to...Ch. 8 - Prob. 8.66SPCh. 8 - Prob. 8.67SPCh. 8 - Prob. 8.68SPCh. 8 - Prob. 8.69SPCh. 8 - Prob. 8.70SPCh. 8 - Prob. 8.71SPCh. 8 - Prob. 8.72SPCh. 8 - Prob. 8.73SPCh. 8 - Prob. 8.74SPCh. 8 - Prob. 8.75SPCh. 8 - Prob. 8.76SPCh. 8 - Prob. 8.77SPCh. 8 - Prob. 8.78SPCh. 8 - Prob. 8.79SPCh. 8 - Prob. 8.80SPCh. 8 - Prob. 8.81SPCh. 8 - Styrene (C8H8), the precursor of polystyrene...Ch. 8 - Prob. 8.83SPCh. 8 - Prob. 8.84SPCh. 8 - Prob. 8.85SPCh. 8 - Prob. 8.86SPCh. 8 - Prob. 8.87SPCh. 8 - Use the bond dissociation energies in Table 8.3 on...Ch. 8 - Use the bond dissociation energies in Table 8.3 to...Ch. 8 - Prob. 8.90SPCh. 8 - Prob. 8.91SPCh. 8 - Prob. 8.92SPCh. 8 - Prob. 8.93SPCh. 8 - Prob. 8.94SPCh. 8 - Prob. 8.95SPCh. 8 - Prob. 8.96SPCh. 8 - Prob. 8.97SPCh. 8 - Prob. 8.98SPCh. 8 - Prob. 8.99SPCh. 8 - Prob. 8.100SPCh. 8 - Prob. 8.101SPCh. 8 - Prob. 8.102SPCh. 8 - Tell whether reactions with the following values...Ch. 8 - Prob. 8.104SPCh. 8 - Prob. 8.105SPCh. 8 - Prob. 8.106SPCh. 8 - Prob. 8.107SPCh. 8 - Prob. 8.108SPCh. 8 - Prob. 8.109SPCh. 8 - When 1.50 g of magnesium metal is allowed to react...Ch. 8 - Use the data in Appendix B to find standard...Ch. 8 - Prob. 8.112CHPCh. 8 - The boiling point of a substance is defined as the...Ch. 8 - What is the melting point of benzene in kelvin if...Ch. 8 - Metallic mercury is obtained by heating the...Ch. 8 - Prob. 8.116CHPCh. 8 - Methanol (CH3OH) is made industrially in two steps...Ch. 8 - Isooctane, C8H18, is the component of gasoline...Ch. 8 - We said in Section 8.1 that the potential energy...Ch. 8 - For a process to be spontaneous, the total entropy...Ch. 8 - Set up a Hesss law cycle, and use the following...Ch. 8 - Prob. 8.122CHPCh. 8 - Prob. 8.123CHPCh. 8 - Prob. 8.124CHPCh. 8 - Citric acid has three dissociable hydrogens. When...Ch. 8 - Prob. 8.126CHPCh. 8 - Imagine that you dissolve 10.0 g of a mixture of...Ch. 8 - Prob. 8.128CHPCh. 8 - Prob. 8.129MPCh. 8 - Phosgene, COCl2(g), is a toxic gas used as an...Ch. 8 - Prob. 8.131MPCh. 8 - (a) Write a balanced equation for the reaction of...Ch. 8 - Prob. 8.133MPCh. 8 - Reaction of gaseous fluorine with compound X...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Coal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forwardWould the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the heat capacity of the calorimeter were taken into account? Explain your answer.arrow_forward9.42 Why is enthalpy generally more useful than internal energy in the thermodynamics of real world systems?arrow_forward
- The statement Energycan beneithercreatednor destroyedis sometimes used as an equivalent statement of the first law of thermodynamics. There areinaccuracies to the statement, however. Restate it tomake it less inaccurate.arrow_forwardUnder what circumstances is the heat of a process equal to the enthalpy change for the process?arrow_forwardExplain in your own words what is meant by the term entropy. Explain how both matter spread and energy spread are related to the concept of entropy.arrow_forward
- The reaction SO3(g)+H2O(l)H2SO4(aq) is the last step in the commercial production of sulfuric acid. The enthalpy change for this reaction is 227 kJ. In designing a sulfuric acid plant, is it necessary to provide for heating or cooling of the reaction mixture? Explain.arrow_forwardA pot of cold water is heated on a stove, and when the water boils, a fresh egg is placed in the water to cook. Describe the events that are occurring in terms of the zeroth law of thermodynamics.arrow_forwardThermodynamics provides a way to interpret everyday occurrences. If you live in northern climates, one common experience is that during early winter, snow falls but then melts when it hits the ground. Both the formation and the melting happen spontaneously. How can thermodynamics explain both of these seemingly opposed events?arrow_forward
- The decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forwardAt 298 K, the standard enthalpies of formation for C2H2(g) and C6H6(l) are 227 kJ/mol and 49 kJ/mol, respectively. a. Calculate H for C6H6(l)3C2H2(g) b. Both acetylene (C2H2) and benzene (C6H6) can be used as fuels. Which compound would liberate more energy per gram when combusted in air?arrow_forwardIs the formation of ozone (O3(g)) from oxygen (O2(g)) spontaneous at room temperature under standard state conditions?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY