General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.11, Problem 8.19P
Liquid butane (C4H10), the fuel used in many disposable lighters, has ΔH°f = −147.5 kJ/mol and a density of 0.579 g/mL. Write a balanced equation for the combustion of butane, and use Hess’s law to calculate the enthalpy of combustion in kJ/mol, kJ/g, and kJ/mL.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
General Chemistry: Atoms First
Ch. 8.2 - Which of the following are state functions, and...Ch. 8.3 - Calculate the work in kilojoules done during a...Ch. 8.3 - How much work is done in kilojoules, and in which...Ch. 8.4 - The following reaction has E = 186 kJ/mol. (a) Is...Ch. 8.5 - Assuming that Coca Cola has the same specific heat...Ch. 8.5 - What is the specific heat of lead if it takes 97.2...Ch. 8.5 - When 25.0 mL of 1.0 M H2SO4 is added to 50.0 mL of...Ch. 8.6 - The reaction between hydrogen and oxygen to yield...Ch. 8.6 - The explosion of 2.00 mol of solid trinitrotoluene...Ch. 8.7 - How much heat in kilojoules is evolved or absorbed...
Ch. 8.7 - Nitromethane (CH3NO2), sometimes used as a fuel in...Ch. 8.8 - The industrial degreasing solvent methylene...Ch. 8.8 - The reaction of A with B to give D proceeds in two...Ch. 8.8 - Draw a Hesss law diagram similar to that in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.11 - Liquid butane (C4H10), the fuel used in many...Ch. 8.12 - Ethane, C2H6, can be prepared by the reaction of...Ch. 8.12 - Is the reaction represented in the following...Ch. 8.12 - Which of the following reactions are spontaneous...Ch. 8.12 - Is the Haber process for the industrial synthesis...Ch. 8.12 - The following reaction is exothermic: (a) Write a...Ch. 8.12 - Write balanced equations for the combustion...Ch. 8.12 - Biodiesel has a more favorable (more negative)...Ch. 8 - The following reaction is exothermic: (a) Write a...Ch. 8 - Imagine a reaction that results in a change in...Ch. 8 - Redraw the following diagram to represent the...Ch. 8 - Prob. 8.30CPCh. 8 - Prob. 8.31CPCh. 8 - A reaction is carried out in a cylinder fitted...Ch. 8 - The following drawing portrays a reaction of the...Ch. 8 - Prob. 8.34CPCh. 8 - The following reaction of A3 molecules is...Ch. 8 - Prob. 8.36SPCh. 8 - What is internal energy?Ch. 8 - Prob. 8.38SPCh. 8 - Assume that the kinetic energy of a 1400 kg car...Ch. 8 - Prob. 8.40SPCh. 8 - The addition of H2 to CC double bonds is an...Ch. 8 - Prob. 8.42SPCh. 8 - Prob. 8.43SPCh. 8 - Prob. 8.44SPCh. 8 - Prob. 8.45SPCh. 8 - Prob. 8.46SPCh. 8 - Does a measurement carried out in a bomb...Ch. 8 - Prob. 8.48SPCh. 8 - Prob. 8.49SPCh. 8 - Prob. 8.50SPCh. 8 - When 0.187 g of benzene, C6H6, is burned in a bomb...Ch. 8 - When a solution containing 8.00 g of NaOH in 50.0...Ch. 8 - Prob. 8.53SPCh. 8 - Prob. 8.54SPCh. 8 - Prob. 8.55SPCh. 8 - Prob. 8.56SPCh. 8 - Prob. 8.57SPCh. 8 - Prob. 8.58SPCh. 8 - Prob. 8.59SPCh. 8 - Prob. 8.60SPCh. 8 - Prob. 8.61SPCh. 8 - Used in welding metals, the reaction of acetylene...Ch. 8 - Prob. 8.63SPCh. 8 - The familiar ether used as an anesthetic agent is...Ch. 8 - How much energy in kilojoules is required to...Ch. 8 - Prob. 8.66SPCh. 8 - Prob. 8.67SPCh. 8 - Prob. 8.68SPCh. 8 - Prob. 8.69SPCh. 8 - Prob. 8.70SPCh. 8 - Prob. 8.71SPCh. 8 - Prob. 8.72SPCh. 8 - Prob. 8.73SPCh. 8 - Prob. 8.74SPCh. 8 - Prob. 8.75SPCh. 8 - Prob. 8.76SPCh. 8 - Prob. 8.77SPCh. 8 - Prob. 8.78SPCh. 8 - Prob. 8.79SPCh. 8 - Prob. 8.80SPCh. 8 - Prob. 8.81SPCh. 8 - Styrene (C8H8), the precursor of polystyrene...Ch. 8 - Prob. 8.83SPCh. 8 - Prob. 8.84SPCh. 8 - Prob. 8.85SPCh. 8 - Prob. 8.86SPCh. 8 - Prob. 8.87SPCh. 8 - Use the bond dissociation energies in Table 8.3 on...Ch. 8 - Use the bond dissociation energies in Table 8.3 to...Ch. 8 - Prob. 8.90SPCh. 8 - Prob. 8.91SPCh. 8 - Prob. 8.92SPCh. 8 - Prob. 8.93SPCh. 8 - Prob. 8.94SPCh. 8 - Prob. 8.95SPCh. 8 - Prob. 8.96SPCh. 8 - Prob. 8.97SPCh. 8 - Prob. 8.98SPCh. 8 - Prob. 8.99SPCh. 8 - Prob. 8.100SPCh. 8 - Prob. 8.101SPCh. 8 - Prob. 8.102SPCh. 8 - Tell whether reactions with the following values...Ch. 8 - Prob. 8.104SPCh. 8 - Prob. 8.105SPCh. 8 - Prob. 8.106SPCh. 8 - Prob. 8.107SPCh. 8 - Prob. 8.108SPCh. 8 - Prob. 8.109SPCh. 8 - When 1.50 g of magnesium metal is allowed to react...Ch. 8 - Use the data in Appendix B to find standard...Ch. 8 - Prob. 8.112CHPCh. 8 - The boiling point of a substance is defined as the...Ch. 8 - What is the melting point of benzene in kelvin if...Ch. 8 - Metallic mercury is obtained by heating the...Ch. 8 - Prob. 8.116CHPCh. 8 - Methanol (CH3OH) is made industrially in two steps...Ch. 8 - Isooctane, C8H18, is the component of gasoline...Ch. 8 - We said in Section 8.1 that the potential energy...Ch. 8 - For a process to be spontaneous, the total entropy...Ch. 8 - Set up a Hesss law cycle, and use the following...Ch. 8 - Prob. 8.122CHPCh. 8 - Prob. 8.123CHPCh. 8 - Prob. 8.124CHPCh. 8 - Citric acid has three dissociable hydrogens. When...Ch. 8 - Prob. 8.126CHPCh. 8 - Imagine that you dissolve 10.0 g of a mixture of...Ch. 8 - Prob. 8.128CHPCh. 8 - Prob. 8.129MPCh. 8 - Phosgene, COCl2(g), is a toxic gas used as an...Ch. 8 - Prob. 8.131MPCh. 8 - (a) Write a balanced equation for the reaction of...Ch. 8 - Prob. 8.133MPCh. 8 - Reaction of gaseous fluorine with compound X...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A 0.470-g sample of magnesium reacts with 200 g dilute HCl in a coffee-cup calorimeter to form MgCl2(aq) and H2(g). The temperature increases by 10.9 C as the magnesium reacts. Assume that the mixture has the same specific heat as water and a mass of 200 g. (a) Calculate the enthalpy change for the reaction. Is the process exothermic or endothermic? (b) Write the chemical equation and evaluate H.arrow_forwardGasohol, a mixture of gasoline and ethanol, C2H5OH, is used as automobile fuel. The alcohol releases energy in a combustion reaction with O2. C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) If 0.115 g ethanol evolves 3.62 kJ when burned at constant pressure, calculate the combustion enthalpy for ethanol.arrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forward
- The combustion of 1.00 mol liquid methyl alcohol (CH3OH) in excess oxygen is exothermic, giving 727 kJ of heat. (a) Write the thermochemical equation for this reaction. (b) Calculate the enthalpy change that accompanies the burning 10.0 g methanol. (c) Compare this with the amount of heat produced by 10.0 g octane, C8H18, a component of gasoline (see Exercise 5.41).arrow_forwardWhen solid iron burns in oxygen gas (at constant pressure) to produce Fe2O3(s), 1651 kJ of heat is released for every 4 mol of iron burned. How much heat is released when 10.3 g Fe2O3(s) is produced (at constant pressure)? What additional information would you need to calculate the heat released to produce this much Fe2O3(s) if you burned iron in ozone gas, O3(g), instead of O2(g)?arrow_forwardUsing the data in Appendix G, calculate the standard enthalpy change for each of the following reactions: (a) Si(s)+2F2(g)SiF4(g) (b) 2C(s)+2H2(g)+O2(g)CH3CO2H(l) (c) CH4(g)+N2(g)HCN(g)+NH3(g) ; (d) CS2(g)+3Cl2(g)CCl4(g)+S2Cl2(g)arrow_forward
- The process of dissolving ammonium nitrate, NH4NO3, in water is an endothermic process. What is the sign of q? If you were to add some ammonium nitrate to water in a flask, would you expect the flask to feel warm or cool?arrow_forwardA 10.00-g sample of acetic acid, HC2H3O2, was burned in a bomb calorimeter in an excess of oxygen. HC2H3O2(l)+2O2(g)2CO2(g)+2H2O(l) The temperature of the calorimeter rose from 25.00C to 35.84C. If the heat capacity of the calorimeter and its contents is 13.43 kJ/C, what is the enthalpy change for the reaction?arrow_forwardSalicylic acid, C7H6O3, is one of the starting materials in the manufacture of aspirin. When 1.00 g of salicylic acid burns in a bomb calorimeter, the temperature of the bomb and water goes from 23.11C to 28.91C. The calorimeter and water absorb 21.9 kJ of heat. How much heat is given off when one mole of salicylic acid burns?arrow_forward
- Another reaction that is used to propel rockets is N2O4(l)+2N2H4(l)3N2(g)+4H2O(g) This reaction has the advantage that neither product is toxic, so no dangerous pollution is released. When the reaction consumes 10.0 g liquid N2O4, it releases 124 kJ of heat. (a) Is the sign of the enthalpy change positive or negative? (b) What is the value of H for the chemical equation if it is understood to be written in molar quantities?arrow_forwardGive the definition of the standard enthalpy of formation for a substance. Write separate reactions for the formation of NaCl, H2O , C6H12O6, and PbSO4 that have H values equal to Hf for each compound.arrow_forwardIn a coffee-cup calorimeter, 150.0 mL of 0.50 M HCI is added to 50.0 mL of 1.00 M NaOH to make 200.0 g solution at an initial temperature of 48.2C. If the enthalpy of neutralization for the reaction between a strong acid and a strong base is 56 kJ/mol, calculate the final temperature of the calorimeter contents. Assume the specific heat capacity of the solution is 4.184 J/g C and assume no heat Joss to the surroundings.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY