General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.80SP
Interpretation Introduction
Interpretation:
Heat of formation
Concept Introduction:
Standard heat of formation of a compound is termed as quantity of heat absorbed or evolved at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
General Chemistry: Atoms First
Ch. 8.2 - Which of the following are state functions, and...Ch. 8.3 - Calculate the work in kilojoules done during a...Ch. 8.3 - How much work is done in kilojoules, and in which...Ch. 8.4 - The following reaction has E = 186 kJ/mol. (a) Is...Ch. 8.5 - Assuming that Coca Cola has the same specific heat...Ch. 8.5 - What is the specific heat of lead if it takes 97.2...Ch. 8.5 - When 25.0 mL of 1.0 M H2SO4 is added to 50.0 mL of...Ch. 8.6 - The reaction between hydrogen and oxygen to yield...Ch. 8.6 - The explosion of 2.00 mol of solid trinitrotoluene...Ch. 8.7 - How much heat in kilojoules is evolved or absorbed...
Ch. 8.7 - Nitromethane (CH3NO2), sometimes used as a fuel in...Ch. 8.8 - The industrial degreasing solvent methylene...Ch. 8.8 - The reaction of A with B to give D proceeds in two...Ch. 8.8 - Draw a Hesss law diagram similar to that in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.11 - Liquid butane (C4H10), the fuel used in many...Ch. 8.12 - Ethane, C2H6, can be prepared by the reaction of...Ch. 8.12 - Is the reaction represented in the following...Ch. 8.12 - Which of the following reactions are spontaneous...Ch. 8.12 - Is the Haber process for the industrial synthesis...Ch. 8.12 - The following reaction is exothermic: (a) Write a...Ch. 8.12 - Write balanced equations for the combustion...Ch. 8.12 - Biodiesel has a more favorable (more negative)...Ch. 8 - The following reaction is exothermic: (a) Write a...Ch. 8 - Imagine a reaction that results in a change in...Ch. 8 - Redraw the following diagram to represent the...Ch. 8 - Prob. 8.30CPCh. 8 - Prob. 8.31CPCh. 8 - A reaction is carried out in a cylinder fitted...Ch. 8 - The following drawing portrays a reaction of the...Ch. 8 - Prob. 8.34CPCh. 8 - The following reaction of A3 molecules is...Ch. 8 - Prob. 8.36SPCh. 8 - What is internal energy?Ch. 8 - Prob. 8.38SPCh. 8 - Assume that the kinetic energy of a 1400 kg car...Ch. 8 - Prob. 8.40SPCh. 8 - The addition of H2 to CC double bonds is an...Ch. 8 - Prob. 8.42SPCh. 8 - Prob. 8.43SPCh. 8 - Prob. 8.44SPCh. 8 - Prob. 8.45SPCh. 8 - Prob. 8.46SPCh. 8 - Does a measurement carried out in a bomb...Ch. 8 - Prob. 8.48SPCh. 8 - Prob. 8.49SPCh. 8 - Prob. 8.50SPCh. 8 - When 0.187 g of benzene, C6H6, is burned in a bomb...Ch. 8 - When a solution containing 8.00 g of NaOH in 50.0...Ch. 8 - Prob. 8.53SPCh. 8 - Prob. 8.54SPCh. 8 - Prob. 8.55SPCh. 8 - Prob. 8.56SPCh. 8 - Prob. 8.57SPCh. 8 - Prob. 8.58SPCh. 8 - Prob. 8.59SPCh. 8 - Prob. 8.60SPCh. 8 - Prob. 8.61SPCh. 8 - Used in welding metals, the reaction of acetylene...Ch. 8 - Prob. 8.63SPCh. 8 - The familiar ether used as an anesthetic agent is...Ch. 8 - How much energy in kilojoules is required to...Ch. 8 - Prob. 8.66SPCh. 8 - Prob. 8.67SPCh. 8 - Prob. 8.68SPCh. 8 - Prob. 8.69SPCh. 8 - Prob. 8.70SPCh. 8 - Prob. 8.71SPCh. 8 - Prob. 8.72SPCh. 8 - Prob. 8.73SPCh. 8 - Prob. 8.74SPCh. 8 - Prob. 8.75SPCh. 8 - Prob. 8.76SPCh. 8 - Prob. 8.77SPCh. 8 - Prob. 8.78SPCh. 8 - Prob. 8.79SPCh. 8 - Prob. 8.80SPCh. 8 - Prob. 8.81SPCh. 8 - Styrene (C8H8), the precursor of polystyrene...Ch. 8 - Prob. 8.83SPCh. 8 - Prob. 8.84SPCh. 8 - Prob. 8.85SPCh. 8 - Prob. 8.86SPCh. 8 - Prob. 8.87SPCh. 8 - Use the bond dissociation energies in Table 8.3 on...Ch. 8 - Use the bond dissociation energies in Table 8.3 to...Ch. 8 - Prob. 8.90SPCh. 8 - Prob. 8.91SPCh. 8 - Prob. 8.92SPCh. 8 - Prob. 8.93SPCh. 8 - Prob. 8.94SPCh. 8 - Prob. 8.95SPCh. 8 - Prob. 8.96SPCh. 8 - Prob. 8.97SPCh. 8 - Prob. 8.98SPCh. 8 - Prob. 8.99SPCh. 8 - Prob. 8.100SPCh. 8 - Prob. 8.101SPCh. 8 - Prob. 8.102SPCh. 8 - Tell whether reactions with the following values...Ch. 8 - Prob. 8.104SPCh. 8 - Prob. 8.105SPCh. 8 - Prob. 8.106SPCh. 8 - Prob. 8.107SPCh. 8 - Prob. 8.108SPCh. 8 - Prob. 8.109SPCh. 8 - When 1.50 g of magnesium metal is allowed to react...Ch. 8 - Use the data in Appendix B to find standard...Ch. 8 - Prob. 8.112CHPCh. 8 - The boiling point of a substance is defined as the...Ch. 8 - What is the melting point of benzene in kelvin if...Ch. 8 - Metallic mercury is obtained by heating the...Ch. 8 - Prob. 8.116CHPCh. 8 - Methanol (CH3OH) is made industrially in two steps...Ch. 8 - Isooctane, C8H18, is the component of gasoline...Ch. 8 - We said in Section 8.1 that the potential energy...Ch. 8 - For a process to be spontaneous, the total entropy...Ch. 8 - Set up a Hesss law cycle, and use the following...Ch. 8 - Prob. 8.122CHPCh. 8 - Prob. 8.123CHPCh. 8 - Prob. 8.124CHPCh. 8 - Citric acid has three dissociable hydrogens. When...Ch. 8 - Prob. 8.126CHPCh. 8 - Imagine that you dissolve 10.0 g of a mixture of...Ch. 8 - Prob. 8.128CHPCh. 8 - Prob. 8.129MPCh. 8 - Phosgene, COCl2(g), is a toxic gas used as an...Ch. 8 - Prob. 8.131MPCh. 8 - (a) Write a balanced equation for the reaction of...Ch. 8 - Prob. 8.133MPCh. 8 - Reaction of gaseous fluorine with compound X...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The thermochemical equation for the burning of methane, the main component of natural gas, is CH4(g)+2O2(g)CO2(g)+2H2O(l)H=890kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = 890 kJ? (c) What is the enthalpy change when 1.00 g methane burns in an excess of oxygen?arrow_forwardFrom the data given in Appendix I, determine the standard enthalpy change and the standard free energy change for each of the following reactions: (a) BF3(g)+3H2O(l)B(OH)3(s)+3HF(g) (b) BCl3(g)+3H2O(l)B(OH)3+3HCl(g) (c) B2H6(g)+6H2O(l)2B(OH)3(s)+6H2(g)arrow_forwardConsider the Haber process: N2(g)+3H2(g)2NH3(g);H=91.8kJ The density of ammonia at 25C and 1.00 atm is 0.696 g/L. The density of nitrogen, N2, is 1.145 g/L, and the molar heat capacity is 29.12 J/(mol C). (a) How much heat is evolved in the production of 1.00 L of ammonia at 25C and 1.00 atm? (b) What percentage of this heat is required to heat the nitrogen required for this reaction (0.500 L) from 25C to 400C, the temperature at which the Haber process is run?arrow_forward
- The first step in the preparation of lead from its ore (galena, PbS) consists of roasting the ore. PbS(s)+32O2(g)SO2(g)+PbO(s) Calculate the standard enthalpy change for this reaction, using enthalpies of formation (see Appendix C).arrow_forwardGiven: 2Cu2O(s) + O2(g) 4CuO(s)H = 288 kJ Cu2O(s) CuO(s) + CuO(s)H = 11kJ Calculate the standard enthalpy of formation (Ht) for CuO(s).arrow_forwardWhen lightning strikes, the energy can force atmospheric nitrogen and oxygen to react to make NO: N2(g)+O2(g)2NO(g)H=+181.8kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = +181.8 kJ? (c) What is the enthalpy change when 3.50 g nitrogen is reacted with excess O2(g)?arrow_forward
- Using the data in Appendix G, calculate the standard enthalpy change for each of the following reactions: (a) Si(s)+2F2(g)SiF4(g) (b) 2C(s)+2H2(g)+O2(g)CH3CO2H(l) (c) CH4(g)+N2(g)HCN(g)+NH3(g) ; (d) CS2(g)+3Cl2(g)CCl4(g)+S2Cl2(g)arrow_forwardFor the reaction HgO(s)Hg(l)+12O2(g),H=+90.7kJ: a.What quantity of heat is required to produce 1 mole of mercury by this reaction? b.What quantity of heat is required to produce 1 mole of oxygen gas by this reaction? c.What quantity of heat would be released in the following reaction as written? 2Hg(l) + O2(g) 2HgO(s)arrow_forwardFrom the molar heats of formation in Appendix G, determine how much heat is required to evaporate one mole of water: H2O(l)H2O(g)arrow_forward
- The following reactions can be used to prepare samples of metals. Determine the enthalpy change under standard state conditions for each. (a) 2Ag2O(s)4Ag(s)+O2(g) (b) SnO(s)+CO(g)Sn(s)+CO2(g) (c) Cr2O3(s)+3H2(g)2Cr(s)+3H2O(l) (d) 2Al(s)+Fe2O3(s)Al2O(s)+2Fe(s)arrow_forwardWhen boron hydrides burn in air, the reactions are very exothermic (a) Write a balanced equation for the combustion of B5H9(g) in air to give B2O3(s) and H2O(g). (b) Calculate the enthalpy of combustion for B5H9(g) (fH = 73.2 kJ/mol), and compare it with the enthalpy of combustion of B2H6 (2038 kJ/mol). (The enthalpy of formation of B2O3(s) is 1271.9 kJ/mol.) (c) Compare the enthalpy of combustion of C2H6(g) with that of B2H6(g). Which transfers more energy as heat per gram?arrow_forwardThe equation for the fermentation of glucose to alcohol and carbon dioxide is: C6H12O6(aq) 2C2H5OH(aq) + 2CO2(g) The enthalpy change for the reaction is 67 kJ. Is this reaction exothermic or endothermic? Is energy, in the form of heat, absorbed or evolved as the reaction occurs?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY