General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8.32CP
A reaction is carried out in a cylinder fitted with a movable piston. The starting volume is V = 5.00 L, and the apparatus is held at constant temperature and pressure. Assuming that ΔH = −35.0 kJ and ΔE = −34.8 kJ, redraw the piston to show its position after reaction. Does V increase, decrease, or remain the same?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
General Chemistry: Atoms First
Ch. 8.2 - Which of the following are state functions, and...Ch. 8.3 - Calculate the work in kilojoules done during a...Ch. 8.3 - How much work is done in kilojoules, and in which...Ch. 8.4 - The following reaction has E = 186 kJ/mol. (a) Is...Ch. 8.5 - Assuming that Coca Cola has the same specific heat...Ch. 8.5 - What is the specific heat of lead if it takes 97.2...Ch. 8.5 - When 25.0 mL of 1.0 M H2SO4 is added to 50.0 mL of...Ch. 8.6 - The reaction between hydrogen and oxygen to yield...Ch. 8.6 - The explosion of 2.00 mol of solid trinitrotoluene...Ch. 8.7 - How much heat in kilojoules is evolved or absorbed...
Ch. 8.7 - Nitromethane (CH3NO2), sometimes used as a fuel in...Ch. 8.8 - The industrial degreasing solvent methylene...Ch. 8.8 - The reaction of A with B to give D proceeds in two...Ch. 8.8 - Draw a Hesss law diagram similar to that in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.9 - Use the information in Table 8.2 to calculate H in...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.10 - Use the data in Table 8.3 to calculate an...Ch. 8.11 - Liquid butane (C4H10), the fuel used in many...Ch. 8.12 - Ethane, C2H6, can be prepared by the reaction of...Ch. 8.12 - Is the reaction represented in the following...Ch. 8.12 - Which of the following reactions are spontaneous...Ch. 8.12 - Is the Haber process for the industrial synthesis...Ch. 8.12 - The following reaction is exothermic: (a) Write a...Ch. 8.12 - Write balanced equations for the combustion...Ch. 8.12 - Biodiesel has a more favorable (more negative)...Ch. 8 - The following reaction is exothermic: (a) Write a...Ch. 8 - Imagine a reaction that results in a change in...Ch. 8 - Redraw the following diagram to represent the...Ch. 8 - Prob. 8.30CPCh. 8 - Prob. 8.31CPCh. 8 - A reaction is carried out in a cylinder fitted...Ch. 8 - The following drawing portrays a reaction of the...Ch. 8 - Prob. 8.34CPCh. 8 - The following reaction of A3 molecules is...Ch. 8 - Prob. 8.36SPCh. 8 - What is internal energy?Ch. 8 - Prob. 8.38SPCh. 8 - Assume that the kinetic energy of a 1400 kg car...Ch. 8 - Prob. 8.40SPCh. 8 - The addition of H2 to CC double bonds is an...Ch. 8 - Prob. 8.42SPCh. 8 - Prob. 8.43SPCh. 8 - Prob. 8.44SPCh. 8 - Prob. 8.45SPCh. 8 - Prob. 8.46SPCh. 8 - Does a measurement carried out in a bomb...Ch. 8 - Prob. 8.48SPCh. 8 - Prob. 8.49SPCh. 8 - Prob. 8.50SPCh. 8 - When 0.187 g of benzene, C6H6, is burned in a bomb...Ch. 8 - When a solution containing 8.00 g of NaOH in 50.0...Ch. 8 - Prob. 8.53SPCh. 8 - Prob. 8.54SPCh. 8 - Prob. 8.55SPCh. 8 - Prob. 8.56SPCh. 8 - Prob. 8.57SPCh. 8 - Prob. 8.58SPCh. 8 - Prob. 8.59SPCh. 8 - Prob. 8.60SPCh. 8 - Prob. 8.61SPCh. 8 - Used in welding metals, the reaction of acetylene...Ch. 8 - Prob. 8.63SPCh. 8 - The familiar ether used as an anesthetic agent is...Ch. 8 - How much energy in kilojoules is required to...Ch. 8 - Prob. 8.66SPCh. 8 - Prob. 8.67SPCh. 8 - Prob. 8.68SPCh. 8 - Prob. 8.69SPCh. 8 - Prob. 8.70SPCh. 8 - Prob. 8.71SPCh. 8 - Prob. 8.72SPCh. 8 - Prob. 8.73SPCh. 8 - Prob. 8.74SPCh. 8 - Prob. 8.75SPCh. 8 - Prob. 8.76SPCh. 8 - Prob. 8.77SPCh. 8 - Prob. 8.78SPCh. 8 - Prob. 8.79SPCh. 8 - Prob. 8.80SPCh. 8 - Prob. 8.81SPCh. 8 - Styrene (C8H8), the precursor of polystyrene...Ch. 8 - Prob. 8.83SPCh. 8 - Prob. 8.84SPCh. 8 - Prob. 8.85SPCh. 8 - Prob. 8.86SPCh. 8 - Prob. 8.87SPCh. 8 - Use the bond dissociation energies in Table 8.3 on...Ch. 8 - Use the bond dissociation energies in Table 8.3 to...Ch. 8 - Prob. 8.90SPCh. 8 - Prob. 8.91SPCh. 8 - Prob. 8.92SPCh. 8 - Prob. 8.93SPCh. 8 - Prob. 8.94SPCh. 8 - Prob. 8.95SPCh. 8 - Prob. 8.96SPCh. 8 - Prob. 8.97SPCh. 8 - Prob. 8.98SPCh. 8 - Prob. 8.99SPCh. 8 - Prob. 8.100SPCh. 8 - Prob. 8.101SPCh. 8 - Prob. 8.102SPCh. 8 - Tell whether reactions with the following values...Ch. 8 - Prob. 8.104SPCh. 8 - Prob. 8.105SPCh. 8 - Prob. 8.106SPCh. 8 - Prob. 8.107SPCh. 8 - Prob. 8.108SPCh. 8 - Prob. 8.109SPCh. 8 - When 1.50 g of magnesium metal is allowed to react...Ch. 8 - Use the data in Appendix B to find standard...Ch. 8 - Prob. 8.112CHPCh. 8 - The boiling point of a substance is defined as the...Ch. 8 - What is the melting point of benzene in kelvin if...Ch. 8 - Metallic mercury is obtained by heating the...Ch. 8 - Prob. 8.116CHPCh. 8 - Methanol (CH3OH) is made industrially in two steps...Ch. 8 - Isooctane, C8H18, is the component of gasoline...Ch. 8 - We said in Section 8.1 that the potential energy...Ch. 8 - For a process to be spontaneous, the total entropy...Ch. 8 - Set up a Hesss law cycle, and use the following...Ch. 8 - Prob. 8.122CHPCh. 8 - Prob. 8.123CHPCh. 8 - Prob. 8.124CHPCh. 8 - Citric acid has three dissociable hydrogens. When...Ch. 8 - Prob. 8.126CHPCh. 8 - Imagine that you dissolve 10.0 g of a mixture of...Ch. 8 - Prob. 8.128CHPCh. 8 - Prob. 8.129MPCh. 8 - Phosgene, COCl2(g), is a toxic gas used as an...Ch. 8 - Prob. 8.131MPCh. 8 - (a) Write a balanced equation for the reaction of...Ch. 8 - Prob. 8.133MPCh. 8 - Reaction of gaseous fluorine with compound X...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forwardShown below is a diagram depicting the enthalpy change of a chemical reaction run at constant pressure. a Is the reaction exothermic or endothermic? b What is the sign of H? c What is the sign of q? d If the reaction does no work, what is the sign of E for this process?arrow_forwardThe formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forward
- Coal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forwardThe combustion of methane can be represented as follows: a. Use the information given above to determine the value of H for the combustion of methane to form CO2(g) and 2H2O(l). b. What is Hf for an element in its standard state? Why is this? Use the figure above to support your answer. c. How does H for the reaction CO2(g) + 2H2O (1) CH4(g) + O2(g) compare to that of the combustion of methane? Why is this?arrow_forward
- A 50-mL solution of a dilute AgNO3 solution is added to 100 mL of a base solution in a coffee-cup calorimeter. As Ag2O(s) precipitates, the temperature of the solution increases from 23.78 C to 25.19 C. Assuming that the mixture has the same specific heat as water and a mass of 150 g, calculate the heat q. Is the precipitation reaction exothermic or endothermic?arrow_forwardxplain why aluminum cans make good storage containers for soft drinks. Styrofoam cups can be used to keep coffee hot and cola cold. How can this be?arrow_forward9.68 What are some features of petroleum that make it such an attractive fuel?arrow_forward
- Consider the Haber process: N2(g)+3H2(g)2NH3(g);H=91.8kJ The density of ammonia at 25C and 1.00 atm is 0.696 g/L. The density of nitrogen, N2, is 1.145 g/L, and the molar heat capacity is 29.12 J/(mol C). (a) How much heat is evolved in the production of 1.00 L of ammonia at 25C and 1.00 atm? (b) What percentage of this heat is required to heat the nitrogen required for this reaction (0.500 L) from 25C to 400C, the temperature at which the Haber process is run?arrow_forwardAn industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forwardWhen 1.000 g of gaseous butane, C4H10, is burned at 25C and 1.00 atm pressure, H2O(l) and CO2(g) are formed with the evolution of 49.50 kJ of heat. a Calculate the molar enthalpy of formation of butane. (Use enthalpy of formation data for H2O and CO2.) b Gf of butane is 17.2 kJ/mol. What is G for the combustion of 1 mol butane? c From a and b, calculate S for the combustion of 1 mol butane.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY