General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.72QP
Interpretation Introduction
Interpretation:
The valence-shell electron configuration of the Lead atom has to be written
Concept introduction:
Pauli Exclusion Principle
An orbital having a most two electrons and in this two electrons have opposite spins.
Each orbital having no more than two electrons and similar spin is not allowed.
Aufbau Principle
The molecular orbital are filled in the increasing order of their energies starting from lower energy to higher energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
110. Compare the pressures given by (a) the ideal gas law, (b) the van der Waals equation, and
(c) the Redlic-Kwong equation for propane at 400 K and p = 10.62 mol dm³. The van der
Waals parameters for propane are a = 9.3919 dm6 bar mol-2 and b = 0.090494 dm³ mol−1.
The Redlich-Kwong parameters are A = 183.02 dm bar mol-2 and B =
0.062723 dm³ mol-1. The experimental value is 400 bar.
Research in surface science is carried out using stainless steel ultra-high vacuum chambers with pressures as low as 10-12 torr. How many molecules are there in a 1.00 cm3 volume at this pressure and at a temperature of 300 K? For comparison, calculate the number of molecules in a 1.00 cm3 volume at atmospheric pressure and room temperature. In outer space the pressure is approximately 1.3 x 10-11 Pa and the temperature is approximately 2.7 K (determined using the blackbody radiation of the universe). How many molecules would you expect find in 1.00 cm3 of outer space?
Draw the predominant form of
arginine at pH = 7.9. The pKa of the
side chain is 12.5. Include proper
stereochemistry.
H2N
OH
NH
H₂N
'N'
છ
H
pH = 7.9
Select to Draw
Chapter 8 Solutions
General Chemistry - Standalone book (MindTap Course List)
Ch. 8.1 - Look at the following orbital diagrams and...Ch. 8.2 - Imagine a world in which the Pauli principle is No...Ch. 8.3 - Use the building-up principle to obtain the...Ch. 8.3 - Prob. 8.3ECh. 8.3 - Prob. 8.4ECh. 8.3 - Prob. 8.2CCCh. 8.4 - Write an orbital diagram for the ground state of...Ch. 8.6 - Prob. 8.6ECh. 8.6 - The first ionization energy of the chlorine atom...Ch. 8.6 - Prob. 8.8E
Ch. 8.6 - Prob. 8.3CCCh. 8.7 - Prob. 8.4CCCh. 8 - Describe the experiment of Stern and Gerlach. How...Ch. 8 - Prob. 8.2QPCh. 8 - Prob. 8.3QPCh. 8 - What is the maximum number of electrons that can...Ch. 8 - List the orbitals in order of increasing orbital...Ch. 8 - Prob. 8.6QPCh. 8 - Prob. 8.7QPCh. 8 - Prob. 8.8QPCh. 8 - Prob. 8.9QPCh. 8 - Prob. 8.10QPCh. 8 - Describe the major trends that emerge when atomic...Ch. 8 - Prob. 8.12QPCh. 8 - What main group in the periodic table has elements...Ch. 8 - Prob. 8.14QPCh. 8 - Prob. 8.15QPCh. 8 - Prob. 8.16QPCh. 8 - What is the name of the alkali metal atom with...Ch. 8 - What would you predict for the atomic number of...Ch. 8 - Prob. 8.19QPCh. 8 - Prob. 8.20QPCh. 8 - Prob. 8.21QPCh. 8 - Prob. 8.22QPCh. 8 - Prob. 8.23QPCh. 8 - Prob. 8.24QPCh. 8 - Prob. 8.25QPCh. 8 - Which of the following atoms, designated by their...Ch. 8 - Prob. 8.27QPCh. 8 - Prob. 8.28QPCh. 8 - Periodic Properties I A hypothetical element, X,...Ch. 8 - Prob. 8.30QPCh. 8 - Prob. 8.31QPCh. 8 - Prob. 8.32QPCh. 8 - Prob. 8.33QPCh. 8 - Prob. 8.34QPCh. 8 - Prob. 8.35QPCh. 8 - Prob. 8.36QPCh. 8 - Two elements are in the same group, one following...Ch. 8 - Prob. 8.38QPCh. 8 - Prob. 8.39QPCh. 8 - Prob. 8.40QPCh. 8 - Which of the following orbital diagrams are...Ch. 8 - Which of the following orbital diagrams are...Ch. 8 - Which of the following electron configurations are...Ch. 8 - Choose the electron configurations that are...Ch. 8 - Write all of the possible orbital diagrams for the...Ch. 8 - Prob. 8.46QPCh. 8 - Prob. 8.47QPCh. 8 - Use the building-up principle to obtain the...Ch. 8 - Use the building-up principle to obtain the...Ch. 8 - Give the electron configuration of the ground...Ch. 8 - Barium is a Group 2A element in Period 6. Deduce...Ch. 8 - Bismuth is a Group 5A element in Period 6. Write...Ch. 8 - Tungsten is a Group 6B element in Period 6. What...Ch. 8 - Manganese is a Group 7B element in Period 4. What...Ch. 8 - Thallium has the ground-state configuration...Ch. 8 - The configuration for the ground state of iridium...Ch. 8 - Write the orbital diagram for the ground state of...Ch. 8 - Prob. 8.58QPCh. 8 - Write an orbital diagram for the ground state of...Ch. 8 - Write an orbital diagram for the ground state of...Ch. 8 - Order the following elements by increasing atomic...Ch. 8 - Using periodic trends, arrange the following...Ch. 8 - Using periodic trends, arrange the following...Ch. 8 - Arrange the following elements in order of...Ch. 8 - From what you know in a general way about electron...Ch. 8 - Prob. 8.66QPCh. 8 - If potassium chlorate has the formula KClO3, what...Ch. 8 - Prob. 8.68QPCh. 8 - Write the complete ground-state electron...Ch. 8 - Prob. 8.70QPCh. 8 - Obtain the valence-shell configuration of the...Ch. 8 - Prob. 8.72QPCh. 8 - Write the orbital diagram for the ground state of...Ch. 8 - Prob. 8.74QPCh. 8 - Prob. 8.75QPCh. 8 - Prob. 8.76QPCh. 8 - From Figure 8.18, predict the first ionization...Ch. 8 - Prob. 8.78QPCh. 8 - Prob. 8.79QPCh. 8 - Prob. 8.80QPCh. 8 - Prob. 8.81QPCh. 8 - Match each element on the right with a set of...Ch. 8 - Find the electron configuration of the element...Ch. 8 - Find the electron configuration of the element...Ch. 8 - Prob. 8.85QPCh. 8 - Prob. 8.86QPCh. 8 - Prob. 8.87QPCh. 8 - Prob. 8.88QPCh. 8 - Prob. 8.89QPCh. 8 - Prob. 8.90QPCh. 8 - The following are orbital diagrams for presumed...Ch. 8 - Prob. 8.92QPCh. 8 - A metallic element, M, reacts vigorously with...Ch. 8 - A nonmetallic element, R, burns brightly in air to...Ch. 8 - The ground-state electron configuration of an atom...Ch. 8 - Prob. 8.96QPCh. 8 - Prob. 8.97QPCh. 8 - Prob. 8.98QPCh. 8 - Prob. 8.99QPCh. 8 - A neutral atom has the electron configuration...Ch. 8 - Prob. 8.101QPCh. 8 - A metallic element reacts vigorously with water,...Ch. 8 - Prob. 8.103QPCh. 8 - Prob. 8.104QPCh. 8 - Prob. 8.105QPCh. 8 - Prob. 8.106QPCh. 8 - An atom easily loses two electrons to form the ion...Ch. 8 - Prob. 8.108QPCh. 8 - Prob. 8.109QPCh. 8 - The electron affinity of the lutetium atom...Ch. 8 - Prob. 8.111QPCh. 8 - Prob. 8.112QPCh. 8 - Prob. 8.113QPCh. 8 - Prob. 8.114QPCh. 8 - How much energy would be required to ionize 5.00...Ch. 8 - Prob. 8.116QPCh. 8 - Prob. 8.117QPCh. 8 - Prob. 8.118QPCh. 8 - The lattice energy of an ionic solid such as NaCl...Ch. 8 - Calculate H for the following process:...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Please correct answer and don't used hand raitingarrow_forward142. A mixture of H2(g) and N2(g) has a density of 0.216 g/liter at 300 K and 500 torr. What is the mole fraction composition of the mixture?arrow_forwardOne liter of N2(g) at 2.1 bar and two liters of Ar(g) at 3.4 bar are mixed in a 4.0 liter flask to form an ideal gas mixture. Calculate the value of the final pressure of the mixture if the initial and final temperature of the gases are the same. Repeat this calculation if the initial temperature of the N2(g) and Ar(g) are 304 K and 402 K, respectively, and the final temperature of the mixture is 377 K.arrow_forward
- 10 5 4. These four 'H NMR spectra were recorded from different isomers with molecular formula CsH,CIO. They all contain a carbonyl group. Determine the structure of the different isomers. 0 10 5 0 10 5 10 9 8 7 6 5 4 3. 1 0 9 10 10 66 9 0 10 9 10 5 1 8 7 6 5 3 2 -a 8 7 6 5 1 10 9 8 7 6 5 22 2 1 0 3 2 16 1 0 3 2 1 2 6 0arrow_forwardUse the expression below to ⚫ calculate its value and report it to the proper number of significant digits (you may need to round your answer). ⚫ calculate the % error (or % relative error or % inherent error) ⚫ calculate the absolute error. (20.54±0.02 × 0.254±0.003) / (3.21±0.05) = Value: % Error: Absolute error: ± | % (only 1 significant digit) (only 1 significant digit)arrow_forwardIn each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value. parameter Elastic limit Tensile strength more ductile Strain at break Strength Elastic modulus more fragile more tough or resistantarrow_forward
- Nonearrow_forwardWhat functional groups are present in this IRarrow_forwardIn each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value. parameter Elastic limit Tensile strength more ductile Strain at break Strength Elastic modulus more fragile more tough or resistantarrow_forward
- 4) A typical bottle of pop holds carbon dioxide at a pressure of 5 atm. What is the concentration of carbon dioxide in th solution? 5) A stream flowing over rocks and such is exposed to the atmosphere and well aerated. What would be the nitrogen concentration in the water at 25°C? (Air pressure is 1.000 bar.)arrow_forwardUse the expression below to ⚫ calculate its value and report it to the proper number of significant digits (you may need to round your answer). ⚫ calculate the % error (or % relative error or % inherent error) ⚫ calculate the absolute error. (30.078±0.003) - (20.174±0.001) + (9.813±0.005) = Value: % Error: absolute error: ± % (only 1 significant digit) (only 1 significant digit)arrow_forwardDon't used Ai solution and don't used hand raitingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Periodic Properties of Elements | Chemistry | IIT-JEE | NEET | CBSE | Misostudy; Author: Misostudy;https://www.youtube.com/watch?v=L26rRWz4_AI;License: Standard YouTube License, CC-BY
Periodic Trends: Electronegativity, Ionization Energy, Atomic Radius - TUTOR HOTLINE; Author: Melissa Maribel;https://www.youtube.com/watch?v=0h8q1GIQ-H4;License: Standard YouTube License, CC-BY