Chemistry for Engineering Students
3rd Edition
ISBN: 9781285199023
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 6CO
Interpretation Introduction
Interpretation:
Electrical properties in metals, insulators and semiconductors should be explained with reference to the concept of chemical bonding.
Concept introduction:
Chemical bonds are essentially forces of attraction between atoms (molecules or ions) that hold the solid together.- Bonding in solids can be explained based on band diagram, which is an electron energy level diagram that employs the concept of valence and conduction bands
- Solids can be classified as metals, semiconductors and insulators based the gap or the energetic distance between the valence and conduction bands
- Electrical properties of solids arise due to the movement of electrons in the conduction bands.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does the doping increase the conductivity of semiconductors?
How Band theory differentiate between semiconductors and semi materials?
In terms of electron energy band structure, discuss the differences in optically transparent, translucent and opaque materials.
Chapter 8 Solutions
Chemistry for Engineering Students
Ch. 8 - Prob. 1COCh. 8 - • describe the arrangement of atoms in the common...Ch. 8 - • use bind theory to describe bonding in solids.Ch. 8 - Prob. 4COCh. 8 - Prob. 5COCh. 8 - Prob. 6COCh. 8 - Prob. 7COCh. 8 - • explain the connection between intermolecular...Ch. 8 - Prob. 9COCh. 8 - Prob. 10CO
Ch. 8 - Prob. 8.1PAECh. 8 - Why is the C 60form of carbon called...Ch. 8 - Prob. 8.3PAECh. 8 - Prob. 8.4PAECh. 8 - What is the relationship between the structures of...Ch. 8 - Use the web to look up information on nanotubes....Ch. 8 - Prob. 8.7PAECh. 8 - Prob. 8.8PAECh. 8 - Prob. 8.9PAECh. 8 - Using circles, draw regular two-dimensional...Ch. 8 - Prob. 8.11PAECh. 8 - Prob. 8.12PAECh. 8 - Prob. 8.13PAECh. 8 - Prob. 8.14PAECh. 8 - 8.13 What is the coordination number of atoms in...Ch. 8 - Prob. 8.16PAECh. 8 - Prob. 8.17PAECh. 8 - 8.16 Iridium forms a face-centered cubic lattice,...Ch. 8 - 8.17 Europium forms a body-centered cubic unit...Ch. 8 - 8.18 Manganese has a body-centered cubic unit cell...Ch. 8 - Prob. 8.21PAECh. 8 - 8.20 How many electrons per atom are delocalized...Ch. 8 - Prob. 8.23PAECh. 8 - Prob. 8.24PAECh. 8 - Prob. 8.25PAECh. 8 - 8.24 What is the key difference between metallic...Ch. 8 - Prob. 8.27PAECh. 8 - Prob. 8.28PAECh. 8 - 8.25 Draw a depiction of the band structure of a...Ch. 8 - Prob. 8.30PAECh. 8 - Prob. 8.31PAECh. 8 - Prob. 8.32PAECh. 8 - Prob. 8.33PAECh. 8 - Prob. 8.34PAECh. 8 - Prob. 8.35PAECh. 8 - Prob. 8.36PAECh. 8 - Prob. 8.37PAECh. 8 - Suppose that a device is using a 15.0-mg sample of...Ch. 8 - 8.35 What is an instantancous dipole?Ch. 8 - 8.36 Why are dispersion forces attractive?Ch. 8 - 8.37 If a molecule is not very polarizable, how...Ch. 8 - 8.38 What is the relationship between...Ch. 8 - Prob. 8.43PAECh. 8 - Prob. 8.44PAECh. 8 - 8.39 Under what circumstances are ion-dipole...Ch. 8 - 8.40 Which of the following compounds would be...Ch. 8 - 8.41 What is the specific feature of N, O, and F...Ch. 8 - Prob. 8.48PAECh. 8 - 8.43 Identify the kinds of intermolecular forces...Ch. 8 - Prob. 8.50PAECh. 8 - Prob. 8.51PAECh. 8 - Explain from a molecular perspective why graphite...Ch. 8 - 8.45 Describe how interactions between molecules...Ch. 8 - 8.46 What makes a chemical compound volatile?Ch. 8 - 8.47 Answer each of the following questions with...Ch. 8 - 8.48 Why must the vapor pressure of a substance be...Ch. 8 - Prob. 8.57PAECh. 8 - Prob. 8.58PAECh. 8 - Prob. 8.59PAECh. 8 - Suppose that three unknown pure substances are...Ch. 8 - 8.51 Suppose that three unknown pure substances...Ch. 8 - 8.52 Rank the following hydrocarbons in order of...Ch. 8 - Prob. 8.63PAECh. 8 - Prob. 8.64PAECh. 8 - Prob. 8.65PAECh. 8 - Prob. 8.66PAECh. 8 - Prob. 8.67PAECh. 8 - Prob. 8.68PAECh. 8 - Why is there no isotactic or syndiotactic form of...Ch. 8 - Prob. 8.70PAECh. 8 - Prob. 8.71PAECh. 8 - Prob. 8.72PAECh. 8 - 8.61 Distinguish between a block copolymer and a...Ch. 8 - Prob. 8.74PAECh. 8 - Prob. 8.75PAECh. 8 - Prob. 8.76PAECh. 8 - Prob. 8.77PAECh. 8 - 8.66 What structural characteristics are needed...Ch. 8 - Prob. 8.79PAECh. 8 - Prob. 8.80PAECh. 8 - Prob. 8.81PAECh. 8 - Prob. 8.82PAECh. 8 - Prob. 8.83PAECh. 8 - Prob. 8.84PAECh. 8 - Prob. 8.85PAECh. 8 - Prob. 8.86PAECh. 8 - 8.87 Use the vapor pressure curves illustrated...Ch. 8 - Prob. 8.88PAECh. 8 - 8.89 The following data show the vapor pressure of...Ch. 8 - Prob. 8.90PAECh. 8 - Prob. 8.91PAECh. 8 - Prob. 8.92PAECh. 8 - Prob. 8.93PAECh. 8 - Prob. 8.94PAECh. 8 - Prob. 8.95PAECh. 8 - 8.96 A business manager wants to provide a wider...Ch. 8 - 8.97 The doping of semiconductors can be done with...Ch. 8 - 8.98 If you know the density of material and the...Ch. 8 - Prob. 8.99PAECh. 8 - Prob. 8.100PAECh. 8 - Prob. 8.101PAECh. 8 - Prob. 8.102PAECh. 8 - 8.103 In previous chapters, we have noted that...Ch. 8 - Prob. 8.104PAECh. 8 - Prob. 8.105PAE
Knowledge Booster
Similar questions
- 7.72 How does an MSN differ from amorphous silica so that is has improved biocompatibility?arrow_forward. Explain the relationship between the number of bonds that can be formed by a typical atom in a crystal and the possibility of forming linear, two-dimensional, and three-dimensional network structures.arrow_forwardThe number of vacancies in some hypothetical metal increases by a factor of 5 when the temperature is increased from 1060 K to 1160 K. Calculate the energy (in kJ/mol) for vacancy formation assuming that the density of the metal remains the same over this temperature range.arrow_forward
- The edge length of sodium that crystallizes in the BCC structure is 0.492 nm. Calculate the atomic structure of sodium metal.arrow_forwardWhat are quantum numbers and how do they relate to energy levels? How does the Band Theory of Metal utilize and incorporate these energy levels through the Valence Band and Conduction Bands?arrow_forwardThe number of vacancies in some hypothetical metal increases by a factor of 3 when the temperature is increased from 940 ˚C to 1130 ˚C. Calculate the energy for vacancy formation (in J/mol) assuming that the density of the metal remains the same over this temperature range.arrow_forward
- Why is graphite soft lubricant and good conductor of electricity?arrow_forwardTrue or false? SEM can investigate the crystalline structure of an object?arrow_forward9. How would you expect the mechanical properties of a metal with an FCC structure to differ from one with a BCC structure? Why?arrow_forward
- What are the most common types of polymorphism in crystals?arrow_forward9. The density of Al is 2.7 g/cm³ and that of Al2O; is about 4 g/cm³. Describe the characteristics of the aluminum-oxide film. Compare with the oxide film that forms on tungsten. The density of W is 19.254 g/cm and that of WO; is 7.3 g/cm.arrow_forward20. Solid-state chemical sensors are manufactured using semiconductors such as Si and Ge. Doping enhances the conductivity of Si. Which is NOT true for doping of silicon? a. Doping replaces some of the silicon atoms with atoms of different elements. b. Doping silicon with phosphorous enhances the conductivity of silicon by providing an extra conduction electron that is free to move through the crystal. c. Doping silicon with aluminum enhances the conductivity of silicon by creating a vacancy in the crystal called a hole, which behaves as a negative charge carrier. d. n-Type silicon has excess conduction electrons. e. p-Type silicon has excess holes. 21. When using ion-selective electrodes, to compensate for a complex or unknown matrix, the method can be used to determine the analyte concentration. a. calibration curve b. standard addition c. standardization d. least-squares analysis 22. Which potential error associated with a pH measurement is incorrectly defined? a. Junction potential…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning