Chemistry
Chemistry
3rd Edition
ISBN: 9780073402734
Author: Julia Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8, Problem 68QP
Interpretation Introduction

Interpretation: The Lewis structures of the molecules and ions are to be represented.

Concept introduction:

The Lewis structure is a representation of bonding and nonbonding electron pairs present in the outermost shells of the atoms present in a molecule.

The number of bonds formed by an atom in the molecule is determined by the valence electrons pairs.

Dots are placed above and below as well as to the left and right of symbol.

Number of dots is important in Lewis dot symbol but not the order in which the dots are placed around the symbol.

In writing symbol pairing is not done until absolutely necessary.

For metals, the number of dots represents the number of electrons that are lost when the atom forms a cation.

For second period non-metals, the number of unpaired dots is the number of bonds the atom can form.

Atomic ions can also be represented by dot symbols, by simply adding (for anions) and subtracting (for cations) the appropriate number of dots from Lewis dot symbol.

The octet rule states that every atom reacts to form bonds till its octet of electrons gets completely filled.

Expert Solution & Answer
Check Mark

Answer to Problem 68QP

Solution:

a)

Chemistry, Chapter 8, Problem 68QP , additional homework tip  1

b)

Chemistry, Chapter 8, Problem 68QP , additional homework tip  2

c)

Chemistry, Chapter 8, Problem 68QP , additional homework tip  3

d)

Chemistry, Chapter 8, Problem 68QP , additional homework tip  4

e)

Chemistry, Chapter 8, Problem 68QP , additional homework tip  5

Explanation of Solution

a) XeF2

The electronic configurations of xenon and fluorine in XeF2 are as follows:

Xe=[Kr]4d105s25p6F=1s22s22p5

A fluorine atom contains five valence electrons in its 2p subshell due to which it requires only one electron to complete its outermost shell. Two electrons of xenon form bonds with two fluorine atoms. Hence, the Lewis structure of XeF2 contains two XeF bonds.

The Lewis structure of XeF2 is as follows:

Chemistry, Chapter 8, Problem 68QP , additional homework tip  6

b) XeF4

The electronic configurations of xenon and fluorine in XeF4 are as follows:

Xe=[Kr]4d105s25p6F=1s22s22p5

A fluorine atom contains five valence electrons in its 2p subshell due to which it requires only one electron to complete its outermost shell. Four electrons of Xenon form bonds with four fluorine atoms.

Hence, the Lewis structure of XeF4 contains four XeF bonds.

The Lewis structure of XeF4 is as follows:

Chemistry, Chapter 8, Problem 68QP , additional homework tip  7

c) XeF6

The electronic configurations of xenon and fluorine in XeF6 are as follows:

Xe=[Kr]4d105s25p6F=1s22s22p5

A fluorine atom contains five valence electrons in its 2p subshell due to which it requires only one electron to complete its outermost shell. Six electrons of Xenon form bonds with six fluorine atoms.

Hence, the Lewis structure of XeF6 contains six XeF bonds.

The Lewis structure of XeF6 is as follows:

Chemistry, Chapter 8, Problem 68QP , additional homework tip  8

d) XeOF4

The electronic configurations of xenon, oxygen, and fluorine in XeOF4 are as follows:

Xe=[Kr]4d105s25p6F=1s22s22p5O=1s22s22p4

A fluorine atom contains five valence electrons and oxygen contains four electrons in its 2p subshell, respectively, due to which fluorine requires one electron and oxygen requires two electrons to complete their outermost shells. Two electrons of xenon form two bonds with oxygen whereas four electrons of xenon form four bonds with four fluorine. Hence, the Lewis structure of XeOF4 contains four XeF single bonds and one XeO double bond.

The Lewis structure of XeOF4 is as follows:

Chemistry, Chapter 8, Problem 68QP , additional homework tip  9

e) XeO2F2

The electronic configurations of xenon, oxygen, and fluorine in XeO2F2 are as follows:

Xe=[Kr]4d105s25p6F=1s22s22p5O=1s22s22p4

A fluorine atom contains five valence electrons and oxygen contains four electrons in its 2p subshell, respectively, due to which fluorine requires one electron and oxygen requires two electrons to complete their outermost shells. Four electrons of xenon form four bonds with two oxygen atoms whereas two electrons of xenon form two bonds with two fluorine. Hence, the Lewis structure of XeO2F2 contains two XeF single bonds and two XeO double bonds.

The Lewis structure of XeO2F2 is as follows:

Chemistry, Chapter 8, Problem 68QP , additional homework tip  10

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An ionic compound of formula XY2 (X = cation with two positive charges, Y = anion with one negative charge) has the following mass composition: Mg 10.9%, Cl 31.8%, O57.3%. (a) What is the chemical formula and name of the compound? (b) Give the most probable Lewis structure for the ions contained in the compound.
Use Lewis electron-dot symbols to represent the formationof (a) BrF₃ from bromine and fluorine atoms; (b) AlF₃ from alu-minum and fluorine atoms.
Chemical species are said to be isoelectronic if they have the same Lewis structure (regardless of charge). Consider these ions and write a Lewis structure for a neutral molecule that is isoelectronic with them. (a) CN–, (b) NH4+ (c) CO3 2–

Chapter 8 Solutions

Chemistry

Ch. 8.2 - 8.2.1 Will the lattice energy of KF be larger or...Ch. 8.2 - 8.2.2 Using the following data, calculate the...Ch. 8.2 - 8.2.3 Lattice energies are graphed for three...Ch. 8.3 - Practice ProblemATTEMPT Using data from Figures...Ch. 8.3 - Prob. 1PPBCh. 8.3 - Prob. 1PPCCh. 8.4 - Practice Problem ATTEMPT Classify the following...Ch. 8.4 - Prob. 1PPBCh. 8.4 - Prob. 1PPCCh. 8.4 - In which of the following molecules are the bonds...Ch. 8.4 - Using data from Table 8.5, calculate the magnitude...Ch. 8.4 - Prob. 3CPCh. 8.4 - Prob. 4CPCh. 8.5 - Prob. 1PPACh. 8.5 - Prob. 1PPBCh. 8.5 - Two pairs of elements are highlighted in the...Ch. 8.5 - Identify the correct Lewis structure for formic...Ch. 8.5 - Identity the correct Lewis structure for hydrogen...Ch. 8.6 - Prob. 1PPACh. 8.6 - Prob. 1PPBCh. 8.6 - Prob. 1PPCCh. 8.6 - Determine the formal charges on H, C, and N,...Ch. 8.6 - 8.6.2 Which of the Lewis structures shown is most...Ch. 8.7 - Prob. 1PPACh. 8.7 - Practice ProblemBUILD Draw the Lewis structure for...Ch. 8.7 - Practice Problem CONCEPTUALIZE Of the three Lewis...Ch. 8.7 - Indicate which of the following are resonance...Ch. 8.7 - 8.7.2 How many resonance structures can be drawn...Ch. 8.8 - Prob. 1PPACh. 8.8 - Prob. 1PPBCh. 8.8 - Practice Problem CONCEPTUALIZE The hypothetical...Ch. 8.8 - In which of the following species does the central...Ch. 8.8 - Prob. 2CPCh. 8.8 - In which species does the central atom obey the...Ch. 8.8 - 8.8.4 How many lone pairs are there on the central...Ch. 8.9 - Prob. 1PPACh. 8.9 - Practice ProblemBUILD Use Lewis structures and...Ch. 8.9 - Prob. 1PPCCh. 8.9 - 8.9.1 Use data from Table 8.6 to estimate for the...Ch. 8.9 - Use data from Table 8.6 to estimate Δ H rxn for...Ch. 8.9 - Use bond enthalpies to determine Δ H rxn for the...Ch. 8.9 - Prob. 4CPCh. 8.10 - Practice ProblemATTEMPT Draw all possible...Ch. 8.10 - Prob. 1PPBCh. 8.10 - Practice ProblemCONCEPTUALIZE The Lewis structure...Ch. 8.11 - Prob. 1PPACh. 8.11 - Prob. 1PPBCh. 8.11 - Prob. 1PPCCh. 8.12 - Prob. 1PPACh. 8.12 - Prob. 1PPBCh. 8.12 - Prob. 1PPCCh. 8.13 - Prob. 1PPACh. 8.13 - Practice Problem BUILD Using the following...Ch. 8.13 - Prob. 1PPCCh. 8 - 8.1 Which of the following atoms must always obey...Ch. 8 - Prob. 2KSPCh. 8 - Prob. 3KSPCh. 8 - Prob. 4KSPCh. 8 - What is a Lewis dot symbol? What elements do we...Ch. 8 - Use the second member of each group from Group 1A...Ch. 8 - Prob. 3QPCh. 8 - 8.4 Write Lewis dot symbols for the following...Ch. 8 - Write Lewis dot symbols for the following atoms...Ch. 8 - Prob. 6QPCh. 8 - Prob. 7QPCh. 8 - Name five metals and five nonmetals that are very...Ch. 8 - Prob. 9QPCh. 8 - Prob. 10QPCh. 8 - Prob. 11QPCh. 8 - The term molar mass was introduced in Chapter 3....Ch. 8 - Prob. 13QPCh. 8 - Prob. 14QPCh. 8 - Prob. 15QPCh. 8 - Explain how the lattice energy of an ionic...Ch. 8 - Prob. 17QPCh. 8 - Prob. 18QPCh. 8 - 8.19 Use the Born-Haber cycle outlined in Section...Ch. 8 - Calculate the lattice energy of CaCl 2 . Use data...Ch. 8 - An ionic bond is formed between a cation A + and...Ch. 8 - Prob. 22QPCh. 8 - Use Lewis dot symbols to show the transfer of...Ch. 8 - Write the Lewis dot symbols of the reactants and...Ch. 8 - 8.25 Describe Lewis’s contribution to our...Ch. 8 - Prob. 26QPCh. 8 - Prob. 27QPCh. 8 - Prob. 28QPCh. 8 - Prob. 29QPCh. 8 - Prob. 30QPCh. 8 - Prob. 31QPCh. 8 - Prob. 32QPCh. 8 - Prob. 33QPCh. 8 - Define electronegativity, and explain the...Ch. 8 - Prob. 35QPCh. 8 - Prob. 36QPCh. 8 - List the following bonds in order of increasing...Ch. 8 - Classify the following bonds as covalent, polar...Ch. 8 - 8.41 Classify the following bonds as covalent,...Ch. 8 - 8.42 List the following bonds in order of...Ch. 8 - Prob. 41QPCh. 8 - Prob. 42QPCh. 8 - Draw Lewis structures for the following molecules...Ch. 8 - Draw Lewis structures for the following molecules:...Ch. 8 - Prob. 45QPCh. 8 - Prob. 46QPCh. 8 - 8.51 Draw Lewis structures for the following ions:...Ch. 8 - Draw Lewis structures for the following ions: (a)...Ch. 8 - Prob. 49QPCh. 8 - Prob. 50QPCh. 8 - Prob. 51QPCh. 8 - Prob. 52QPCh. 8 - Prob. 53QPCh. 8 - 8.58 Draw three resonance structures for the...Ch. 8 - Prob. 55QPCh. 8 - Prob. 56QPCh. 8 - Draw three reasonable resonance structures for the...Ch. 8 - Draw three resonance structures for the molecule N...Ch. 8 - Prob. 59QPCh. 8 - Prob. 60QPCh. 8 - Prob. 61QPCh. 8 - Prob. 62QPCh. 8 - Prob. 63QPCh. 8 - Prob. 64QPCh. 8 - Prob. 65QPCh. 8 - The AlI 3 molecule has an incomplete octet around...Ch. 8 - Prob. 67QPCh. 8 - Prob. 68QPCh. 8 - 8.73 Write a Lewis structure for Does this...Ch. 8 - Prob. 70QPCh. 8 - Prob. 71QPCh. 8 - 8.76 Draw two resonance structures for the bromate...Ch. 8 - Prob. 73QPCh. 8 - What is bond enthalpy? Bond enthalpies of...Ch. 8 - Prob. 75QPCh. 8 - Prob. 76QPCh. 8 - Prob. 77QPCh. 8 - Prob. 78QPCh. 8 - For the reaction 2 C 2 H 6 ( g ) + 7 O 2 ( g ) → 4...Ch. 8 - Prob. 80QPCh. 8 - 8.85. Use average bond enthalpies from Table 8.6...Ch. 8 - Prob. 82APCh. 8 - Prob. 83APCh. 8 - Prob. 84APCh. 8 - Prob. 85APCh. 8 - Prob. 86APCh. 8 - 8.91 Describe some characteristics of an ionic...Ch. 8 - Prob. 88APCh. 8 - Prob. 89APCh. 8 - Prob. 90APCh. 8 - Prob. 91APCh. 8 - Prob. 92APCh. 8 - Prob. 93APCh. 8 - Prob. 94APCh. 8 - Prob. 95APCh. 8 - Prob. 96APCh. 8 - Prob. 97APCh. 8 - Prob. 98APCh. 8 - Prob. 99APCh. 8 - Prob. 100APCh. 8 - Which of the following species are isoelectronic:...Ch. 8 - Prob. 102APCh. 8 - 8.107 Draw two resonance structures for each...Ch. 8 - The following species have been detected in...Ch. 8 - The amide ion ( NH 2 − ) is a Brø�nsted base. Use...Ch. 8 - Prob. 106APCh. 8 - The triiodide ion ( I 3 − ) in which the I atoms...Ch. 8 - Prob. 108QPCh. 8 - In 1999, an unusual cation containing only...Ch. 8 - Prob. 110QPCh. 8 - Prob. 111QPCh. 8 - Prob. 112APCh. 8 - In the gas phase, aluminum chloride exists as a...Ch. 8 - Prob. 114APCh. 8 - Calculate Δ H º for the reaction H 2 ( g ) + I 2 (...Ch. 8 - Draw Lewis structures for the following organic...Ch. 8 - Prob. 117APCh. 8 - Prob. 118APCh. 8 - Prob. 119APCh. 8 - Write three resonance structures for (a) the...Ch. 8 - Prob. 121APCh. 8 - Prob. 122APCh. 8 - Prob. 123APCh. 8 - Prob. 124APCh. 8 - Prob. 125APCh. 8 - Prob. 126APCh. 8 - Prob. 127APCh. 8 - Among the common inhaled anesthetics are:...Ch. 8 - Prob. 129APCh. 8 - Prob. 130APCh. 8 - Prob. 131APCh. 8 - 8.136 Using this and data from Appendix 2,...Ch. 8 - Prob. 133QPCh. 8 - Prob. 134QPCh. 8 - Prob. 135QPCh. 8 - Prob. 136QPCh. 8 - Prob. 137QPCh. 8 - Prob. 138APCh. 8 - Prob. 139APCh. 8 - Although nitrogen dioxide ( NO 2 ) is a stable...Ch. 8 - 8.145 The chlorine nitrate molecule is believed...Ch. 8 - The hydroxyl radical ( OH ) plays an important...Ch. 8 - Prob. 143APCh. 8 - Prob. 144APCh. 8 - Prob. 1SEPPCh. 8 - 2. Use formal charges to choose the best of the...Ch. 8 - Prob. 3SEPPCh. 8 - Prob. 4SEPP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY