Chemistry
3rd Edition
ISBN: 9780073402734
Author: Julia Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 64QP
Interpretation Introduction
Interpretation:
The reason for the statement “compound
Concept Introduction:
Octet rule states that elements participate in bond formation to complete their outermost electronic shells. The compound becomes stable after attaining a fully filled electronic configuration, and thereby becomes unreactive.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Draw all of the Lewis structures of O22- which obey the octet rule and use this Lewis structure or these resonance structures to predict how many covalent bonds connect each oxygen atom in the real structure to the central O atom. Assume that the octet rule is followed for the O atom when you draw your structure(s). Pick the correct statement from the choices below.
a) Each oxygen atom is connected to the central O atom with 1 covalent bonds.
b) Each oxygen atom is connected to the central O atom with 1.33 covalent bonds.
c) Each oxygen atom is connected to the central O atom with 2 covalent bonds.
d) Each oxygen atom is connected to the central O atom with 1.67 covalent bonds.
e) Each oxygen atom is connected to the central O atom with 1.25 covalent bonds.
DRAW the Lewis structure for the carbonate ion, co,². How many identical
resonance forms exist for carbonate?
Hydrazine, N2H4, burns in oxygen as follows:
N2H4 + O2 → N2 + 2H2O
[The bond energies in kJ/mol are: N-H = 388; N-N 163; N≡N 944; O-H 463; O=O 496]
Draw the chemical structures of the reactants and products and
give the formula to calculate enthalpy change in a reaction, ΔH.
Chapter 8 Solutions
Chemistry
Ch. 8.1 - Practice ProblemATTEMPT Write Lewis dot symbols...Ch. 8.1 - Practice Problem BUILD
Indicate the charge on...Ch. 8.1 - Practice ProblemCONCEPTUALIZE For each of the...Ch. 8.1 - 8.1.1 Using only a periodic table, determine the...Ch. 8.1 - 8.1.2 Using only a periodic table, determine the...Ch. 8.1 - To which group does element X belong if its Lewis...Ch. 8.1 - Prob. 4CPCh. 8.2 - Prob. 1PPACh. 8.2 - Practice ProblemBUILD Arrange the compounds NaF,...Ch. 8.2 - Practice ProblemCONCEPTUALIZE Common ions of four...
Ch. 8.2 - 8.2.1 Will the lattice energy of KF be larger or...Ch. 8.2 - 8.2.2 Using the following data, calculate the...Ch. 8.2 - 8.2.3 Lattice energies are graphed for three...Ch. 8.3 - Practice ProblemATTEMPT Using data from Figures...Ch. 8.3 - Prob. 1PPBCh. 8.3 - Prob. 1PPCCh. 8.4 - Practice Problem ATTEMPT Classify the following...Ch. 8.4 - Prob. 1PPBCh. 8.4 - Prob. 1PPCCh. 8.4 - In which of the following molecules are the bonds...Ch. 8.4 - Using data from Table 8.5, calculate the magnitude...Ch. 8.4 - Prob. 3CPCh. 8.4 - Prob. 4CPCh. 8.5 - Prob. 1PPACh. 8.5 - Prob. 1PPBCh. 8.5 - Two pairs of elements are highlighted in the...Ch. 8.5 - Identify the correct Lewis structure for formic...Ch. 8.5 - Identity the correct Lewis structure for hydrogen...Ch. 8.6 - Prob. 1PPACh. 8.6 - Prob. 1PPBCh. 8.6 - Prob. 1PPCCh. 8.6 - Determine the formal charges on H, C, and N,...Ch. 8.6 - 8.6.2 Which of the Lewis structures shown is most...Ch. 8.7 - Prob. 1PPACh. 8.7 - Practice ProblemBUILD Draw the Lewis structure for...Ch. 8.7 - Practice Problem CONCEPTUALIZE
Of the three Lewis...Ch. 8.7 - Indicate which of the following are resonance...Ch. 8.7 - 8.7.2 How many resonance structures can be drawn...Ch. 8.8 - Prob. 1PPACh. 8.8 - Prob. 1PPBCh. 8.8 - Practice Problem CONCEPTUALIZE
The hypothetical...Ch. 8.8 - In which of the following species does the central...Ch. 8.8 - Prob. 2CPCh. 8.8 - In which species does the central atom obey the...Ch. 8.8 - 8.8.4 How many lone pairs are there on the central...Ch. 8.9 - Prob. 1PPACh. 8.9 - Practice ProblemBUILD Use Lewis structures and...Ch. 8.9 - Prob. 1PPCCh. 8.9 - 8.9.1 Use data from Table 8.6 to estimate for the...Ch. 8.9 - Use data from Table 8.6 to estimate Δ H rxn for...Ch. 8.9 - Use bond enthalpies to determine Δ H rxn for the...Ch. 8.9 - Prob. 4CPCh. 8.10 - Practice ProblemATTEMPT Draw all possible...Ch. 8.10 - Prob. 1PPBCh. 8.10 - Practice ProblemCONCEPTUALIZE The Lewis structure...Ch. 8.11 - Prob. 1PPACh. 8.11 - Prob. 1PPBCh. 8.11 - Prob. 1PPCCh. 8.12 - Prob. 1PPACh. 8.12 - Prob. 1PPBCh. 8.12 - Prob. 1PPCCh. 8.13 - Prob. 1PPACh. 8.13 - Practice Problem BUILD
Using the following...Ch. 8.13 - Prob. 1PPCCh. 8 - 8.1
Which of the following atoms must always obey...Ch. 8 - Prob. 2KSPCh. 8 - Prob. 3KSPCh. 8 - Prob. 4KSPCh. 8 - What is a Lewis dot symbol? What elements do we...Ch. 8 - Use the second member of each group from Group 1A...Ch. 8 - Prob. 3QPCh. 8 - 8.4 Write Lewis dot symbols for the following...Ch. 8 - Write Lewis dot symbols for the following atoms...Ch. 8 - Prob. 6QPCh. 8 - Prob. 7QPCh. 8 - Name five metals and five nonmetals that are very...Ch. 8 - Prob. 9QPCh. 8 - Prob. 10QPCh. 8 - Prob. 11QPCh. 8 - The term molar mass was introduced in Chapter 3....Ch. 8 - Prob. 13QPCh. 8 - Prob. 14QPCh. 8 - Prob. 15QPCh. 8 - Explain how the lattice energy of an ionic...Ch. 8 - Prob. 17QPCh. 8 - Prob. 18QPCh. 8 - 8.19 Use the Born-Haber cycle outlined in Section...Ch. 8 - Calculate the lattice energy of CaCl 2 . Use data...Ch. 8 - An ionic bond is formed between a cation A + and...Ch. 8 - Prob. 22QPCh. 8 - Use Lewis dot symbols to show the transfer of...Ch. 8 - Write the Lewis dot symbols of the reactants and...Ch. 8 - 8.25 Describe Lewis’s contribution to our...Ch. 8 - Prob. 26QPCh. 8 - Prob. 27QPCh. 8 - Prob. 28QPCh. 8 - Prob. 29QPCh. 8 - Prob. 30QPCh. 8 - Prob. 31QPCh. 8 - Prob. 32QPCh. 8 - Prob. 33QPCh. 8 - Define electronegativity, and explain the...Ch. 8 - Prob. 35QPCh. 8 - Prob. 36QPCh. 8 - List the following bonds in order of increasing...Ch. 8 - Classify the following bonds as covalent, polar...Ch. 8 - 8.41 Classify the following bonds as covalent,...Ch. 8 - 8.42 List the following bonds in order of...Ch. 8 - Prob. 41QPCh. 8 - Prob. 42QPCh. 8 - Draw Lewis structures for the following molecules...Ch. 8 - Draw Lewis structures for the following molecules:...Ch. 8 - Prob. 45QPCh. 8 - Prob. 46QPCh. 8 - 8.51 Draw Lewis structures for the following ions:...Ch. 8 - Draw Lewis structures for the following ions: (a)...Ch. 8 - Prob. 49QPCh. 8 - Prob. 50QPCh. 8 - Prob. 51QPCh. 8 - Prob. 52QPCh. 8 - Prob. 53QPCh. 8 - 8.58 Draw three resonance structures for the...Ch. 8 - Prob. 55QPCh. 8 - Prob. 56QPCh. 8 - Draw three reasonable resonance structures for the...Ch. 8 - Draw three resonance structures for the molecule N...Ch. 8 - Prob. 59QPCh. 8 - Prob. 60QPCh. 8 - Prob. 61QPCh. 8 - Prob. 62QPCh. 8 - Prob. 63QPCh. 8 - Prob. 64QPCh. 8 - Prob. 65QPCh. 8 - The AlI 3 molecule has an incomplete octet around...Ch. 8 - Prob. 67QPCh. 8 - Prob. 68QPCh. 8 - 8.73 Write a Lewis structure for Does this...Ch. 8 - Prob. 70QPCh. 8 - Prob. 71QPCh. 8 - 8.76 Draw two resonance structures for the bromate...Ch. 8 - Prob. 73QPCh. 8 - What is bond enthalpy? Bond enthalpies of...Ch. 8 - Prob. 75QPCh. 8 - Prob. 76QPCh. 8 - Prob. 77QPCh. 8 - Prob. 78QPCh. 8 - For the reaction 2 C 2 H 6 ( g ) + 7 O 2 ( g ) → 4...Ch. 8 - Prob. 80QPCh. 8 - 8.85. Use average bond enthalpies from Table 8.6...Ch. 8 - Prob. 82APCh. 8 - Prob. 83APCh. 8 - Prob. 84APCh. 8 - Prob. 85APCh. 8 - Prob. 86APCh. 8 - 8.91 Describe some characteristics of an ionic...Ch. 8 - Prob. 88APCh. 8 - Prob. 89APCh. 8 - Prob. 90APCh. 8 - Prob. 91APCh. 8 - Prob. 92APCh. 8 - Prob. 93APCh. 8 - Prob. 94APCh. 8 - Prob. 95APCh. 8 - Prob. 96APCh. 8 - Prob. 97APCh. 8 - Prob. 98APCh. 8 - Prob. 99APCh. 8 - Prob. 100APCh. 8 - Which of the following species are isoelectronic:...Ch. 8 - Prob. 102APCh. 8 - 8.107 Draw two resonance structures for each...Ch. 8 - The following species have been detected in...Ch. 8 - The amide ion ( NH 2 − ) is a Brø�nsted base. Use...Ch. 8 - Prob. 106APCh. 8 - The triiodide ion ( I 3 − ) in which the I atoms...Ch. 8 - Prob. 108QPCh. 8 - In 1999, an unusual cation containing only...Ch. 8 - Prob. 110QPCh. 8 - Prob. 111QPCh. 8 - Prob. 112APCh. 8 - In the gas phase, aluminum chloride exists as a...Ch. 8 - Prob. 114APCh. 8 - Calculate Δ H º for the reaction H 2 ( g ) + I 2 (...Ch. 8 - Draw Lewis structures for the following organic...Ch. 8 - Prob. 117APCh. 8 - Prob. 118APCh. 8 - Prob. 119APCh. 8 - Write three resonance structures for (a) the...Ch. 8 - Prob. 121APCh. 8 - Prob. 122APCh. 8 - Prob. 123APCh. 8 - Prob. 124APCh. 8 - Prob. 125APCh. 8 - Prob. 126APCh. 8 - Prob. 127APCh. 8 - Among the common inhaled anesthetics are:...Ch. 8 - Prob. 129APCh. 8 - Prob. 130APCh. 8 - Prob. 131APCh. 8 - 8.136 Using this and data from Appendix 2,...Ch. 8 - Prob. 133QPCh. 8 - Prob. 134QPCh. 8 - Prob. 135QPCh. 8 - Prob. 136QPCh. 8 - Prob. 137QPCh. 8 - Prob. 138APCh. 8 - Prob. 139APCh. 8 - Although nitrogen dioxide ( NO 2 ) is a stable...Ch. 8 - 8.145 The chlorine nitrate molecule is believed...Ch. 8 - The hydroxyl radical ( OH ) plays an important...Ch. 8 - Prob. 143APCh. 8 - Prob. 144APCh. 8 - Prob. 1SEPPCh. 8 - 2. Use formal charges to choose the best of the...Ch. 8 - Prob. 3SEPPCh. 8 - Prob. 4SEPP
Knowledge Booster
Similar questions
- Keeping in mind that some elements violate the octet rule, draw a Lewis structure for each compound: (a) BCl 3; (b) SO 3.arrow_forwardDraw the Lewis structure of SO42". Calculate the formal charge of central atom.arrow_forwardSulfuric acid is the industrial chemical produced in greatest quantity worldwide. About 90 billion pounds are produced each year in the United States alone. Write the Lewis structure for sulfuric acid, H2SO4, which has twooxygen atoms and two OH groups bonded to the sulfur.arrow_forward
- Draw the Lewis structure of S2(o3)2- and calculate the formal charges. Show all calculations including calculation of formal charge.arrow_forwardA nonmetal like oxygen forms both ionic and covalent bonds, depending on the identity of the element to which it bonds. What type of bonding is observed in CaO and CO 2? Explain why two different types of bonding are observed.arrow_forwardThe carbonate anion, CO32- , is a resonance hybrid. Draw all of the important resonance structures for this molecule. If an atom has a nonzero formal charge, be sure the formal charge is shown clearly in the structure. Use the resonance structures to calculate the average formal charge on each O atom (which are all equivalent in the "true" structure). [Note: all of the important contributing resonance structures have octets around each atom that desires an octet.]arrow_forward
- Select the best Lewis structure for P2I4, predict the electron group arrangement of each central atom and the shape of this molecule.arrow_forwardLabels on household cleansers caution against mixing bleach with ammonia because the reaction produces monochloramine (NH2Cl) and hydrazine (N2H4), both of which are toxic. The balanced equations are shown below. Draw the Lewis structure for monochloramine, which is a covalent compound with the formula NH2Cl. Include all nonbonding electrons, such as lone pairs, and any nonzero formal charges. Draw the Lewis structure for hydrazine, which has the formula N2H4. Include all nonbonding electrons, such as lone pairs, and any nonzero formal charges.arrow_forwardOxygen gas reacts with sulfur tetrafluoride to slowly form sulfur tetrafluoride monoxide gas. Balance the equation for the formation of sulfur tetrafluoride monoxide. chemical reaction: 0,(g) + SF (g) → OSF,(g) Draw the Lewis structure of OSF, where the formal charge is zero on each atom. The sulfur atom is the central atom in the structure, and it is bonded to the oxygen atom and each of the four fluorine atoms. Select Draw Rings More Erase Use the bond energies in the table to estimate the enthalpy of reaction for the formation of sulfur tetrafluoride monoxide. étv Aaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning