CHEMISTRY THE CENTRAL SCIENCE >EBOOK<
14th Edition
ISBN: 9780136873891
Author: Brown
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 27E
Energy is required to remove two electrons from Ca to form Ca2+ , and energy is required to add two electrons to O to form O2 . Yet CaO is stable relative to the free elements. Which statement is the best explanation?
- The lattice energy of CaO is large enough to overcome these processes.
- CaO is a covalent compound, and these processes are irrelevant.
- CaO has a higher molar mass than either Ca or O.
- The enthalpy of formation of CaO is small.
- CaO is stable to atmospheric conditions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Using the following data, calculate the lattice energy of calcium chloride:
Ca2+(g) + 2Cl– (g) → CaCl2(s) ΔHlattice = ?
Sublimation enthalpy of calcium ΔH = 177.8 kJ/mol
First ionization energy of calcium ΔH = 590.2 kJ/mol
Second ionization energy of calcium ΔH = 1144.2 kJ/mol
First electron affinity of chlorine ΔH = –349 kJ/mol
Heat of formation of CaCl2(s) ΔH = –795.4 kJ/mol
Bond energy of Cl2 (see Table 2)
Use Hess’s law to calculate the lattice energy of calcium chloride. set-up must show all the chemical equations and you must show how their H values add up to give your answer.
2. Calculate the lattice energy of MgO, given the following: Mg(s) + ¼O:(g) → Mg0(s)
AH = -602 kJ
AH = 150 kJ
AH = 737 kJ
Mg(s) → Mg(g)
O(g) + 2e (g) → 0*(g)
20(g)→0:(g)
Mg(g) → Mg*(g) + 2 e (g)
AH = -494 kJ
AH = 2180 kJ
Suppose a chemist discovers a new metallic element and names it "Xhaustium" (Xh).Xh exhibits chemical behaviour similar to an alkaline earth.
Xh(s) + F2(g) → XhF2(s)
Lattice energy for XhF2
-2140. kJ/mol
First Ionization energy of Xh
310. kJ/mol
Second Ionization energy of Xh
589 kJ/mol
Electron affinity of F
-327.8 kJ/mol
Bond energy of F2
154 kJ/mol
Enthalpy of sublimation (atomization) of Xh
150. kJ/mol
Use the above data to calculate ΔH°f for Xhaustium fluoride.
Your answer must be accurate and precise to the nearest 1 kJ/mol, as are the given parameters.
Chapter 8 Solutions
CHEMISTRY THE CENTRAL SCIENCE >EBOOK<
Ch. 8.2 - Which of the these elements is most likely to from...Ch. 8.2 - Prob. 8.1.2PECh. 8.2 - Which of the following bond is the most polar? H-F...Ch. 8.2 - Prob. 8.2.2PECh. 8.3 - Prob. 8.3.1PECh. 8.3 - Prob. 8.3.2PECh. 8.4 - Which of the following bonds is the most polar? a....Ch. 8.4 - Which of the following bonds is most polar: S-Cl,...Ch. 8.4 - Prob. 8.5.1PECh. 8.4 - The dipole moment of chlorine monofluoride,...
Ch. 8.5 - Which of the these molecules has a Lewis structure...Ch. 8.5 -
How many valence electrons should appear in the...Ch. 8.5 - Compare the lewis symbol for neon the structure...Ch. 8.5 - Prob. 8.7.2PECh. 8.5 - Prob. 8.8.1PECh. 8.5 - Prob. 8.8.2PECh. 8.5 - Prob. 8.9.1PECh. 8.5 - Prob. 8.9.2PECh. 8.6 - Which of the statements about resonance is true?...Ch. 8.6 - Prob. 8.10.2PECh. 8.7 - Prob. 8.11.1PECh. 8.7 - Prob. 8.11.2PECh. 8 - Prob. 1DECh. 8 - Prob. 1ECh. 8 - Prob. 2ECh. 8 - A portion of a two-dimensional "slab" of NaCl(s)...Ch. 8 - Prob. 4ECh. 8 - Prob. 5ECh. 8 - Incomplete Lewis structures for the nitrous acid...Ch. 8 - Prob. 7ECh. 8 - Prob. 8ECh. 8 - Prob. 9ECh. 8 - True or false: The hydrogen atom is most stable...Ch. 8 - Consider the element silicon, Si. Write its...Ch. 8 - Write the electron configuration for the element...Ch. 8 - Prob. 13ECh. 8 - What is the Lewis symbol for each of the following...Ch. 8 - Using Lewis symbols, diagram the reaction between...Ch. 8 - Use Lewis symbols to represent the reaction that...Ch. 8 - Predict the chemical formula of the ionic compound...Ch. 8 - Prob. 18ECh. 8 - Prob. 19ECh. 8 - Prob. 20ECh. 8 - Is lattice energy usually endothermic or...Ch. 8 - NaCI and KF have the same crystal structure. The...Ch. 8 - Prob. 23ECh. 8 - Prob. 24ECh. 8 - Consider the ionic compounds KF, NaCl, NaBr, and...Ch. 8 - Which of the following trends in lattice energy is...Ch. 8 - Energy is required to remove two electrons from Ca...Ch. 8 - Prob. 28ECh. 8 - Use data from Appendix C, Figure 7.10, and Figure...Ch. 8 - Prob. 30ECh. 8 - Prob. 31ECh. 8 - Prob. 32ECh. 8 - Using Lewis symbols and Lewis structures, diagram...Ch. 8 - Use Lewis symbols and Lewis structures to diagram...Ch. 8 - Prob. 35ECh. 8 - Prob. 36ECh. 8 - Prob. 37ECh. 8 - What is the trend in electronegativity going from...Ch. 8 - Prob. 39ECh. 8 - By referring only to the periodic table, select...Ch. 8 - which of the following bonds are polar? B-F,...Ch. 8 - Arrange the bonds in each of the following sets in...Ch. 8 - Prob. 43ECh. 8 - Prob. 44ECh. 8 - In the following pairs of binary compounds,...Ch. 8 - Prob. 46ECh. 8 - Prob. 47ECh. 8 - Write Lewis structures for the following: H2CO...Ch. 8 - Prob. 49ECh. 8 - Draw the dominant Lewis structure for the...Ch. 8 - Write Lewis structures that obey the octet rule...Ch. 8 - Prob. 52ECh. 8 - Prob. 53ECh. 8 - Prob. 54ECh. 8 - Prob. 55ECh. 8 - Prob. 56ECh. 8 - Prob. 57ECh. 8 - Prob. 58ECh. 8 - Prob. 59ECh. 8 - Prob. 60ECh. 8 - Prob. 61ECh. 8 - 8.62 For Group 3A-7A elements in the third row of...Ch. 8 - Draw the Lewis structures for each of the...Ch. 8 - Prob. 64ECh. 8 - In the vapor phase, BeCl2exists as a discrete...Ch. 8 -
8.66
Describe the molecule xenon trioxide, XeO3,...Ch. 8 -
8.67 There are many Lewis structures you could...Ch. 8 - Prob. 68ECh. 8 - Using Table 8.3, estimate H for each of the...Ch. 8 - Using Table 8.3, estimate H for the following...Ch. 8 - State whether each of these statements is true or...Ch. 8 - Prob. 72ECh. 8 - Prob. 73ECh. 8 - Prob. 74ECh. 8 - Prob. 75ECh. 8 - Prob. 76ECh. 8 - A new compound is made that has a C-C bond length...Ch. 8 - A new compound is made that has an N-N bond length...Ch. 8 - Prob. 79AECh. 8 - Prob. 80AECh. 8 - An ionic substance of formula MX has a lattice...Ch. 8 - Prob. 82AECh. 8 - Prob. 83AECh. 8 - Prob. 84AECh. 8 - Consider the collection of nonmetallic elements 0,...Ch. 8 - The substance chlorine monoxide, CIO(g), is...Ch. 8 -
[8.87]
a. using the electronegativities of Br...Ch. 8 - Prob. 88AECh. 8 - Although I3- is a known ion, F3- is not. a. Draw...Ch. 8 - Calculate the formal charge on the indicated atom...Ch. 8 - The hypochlorite ion, CIO- , is the active...Ch. 8 - Prob. 92AECh. 8 - a. Triazine, C3 H3N3, is like benzene except that...Ch. 8 - Prob. 94IECh. 8 - Prob. 95IECh. 8 - Prob. 96IECh. 8 - Prob. 97IECh. 8 - Prob. 98IECh. 8 - Prob. 99IECh. 8 - Prob. 100IECh. 8 - Prob. 101IECh. 8 - Prob. 102IECh. 8 -
8.103 The compound chloral hydrate, known in...Ch. 8 - Barium azide is 62.04% Ba and 37.96% N. Each azide...Ch. 8 - Acetylene (C2H2) and nitrogen (N2) both contain a...Ch. 8 - Prob. 106IECh. 8 - Prob. 107IECh. 8 -
8.108 Formic acid has the chemical formula...Ch. 8 - Prob. 109IECh. 8 - Prob. 110IE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Bond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardFor each of the following, write an equation that corresponds to the energy given. a. lattice energy of NaCl b. lattice energy of NH4Br c. lattice energy of MgS d. O9O double bond energy beginning with O2(g) as a reactantarrow_forwardThink of forming an ionic compound as three steps (this is a simplification, as with all models): (I) removing an electron from the metal; (2) adding an electron to the nonmetal; and (3) allowing the metal cation and nonmetal anion to come together. a. What is the sign of the energy change for each of these three processes? b. In general, what is the sign of the sum of the first two processes? Use examples to support your answer. c. What must be the sign of the sum of the three process d. Given your answer to part c, why do ionic bonds occur? e. Given your above explanations, why is NaCl stable but not Na2Cl? NaCl2? What about MgO compared to MgO2? Mg2O?arrow_forward
- Using the standard enthalpy of formation data in Appendix G. determine which bond is stronger: the PCl bond in PCl3(g) or in PCl5(g)?arrow_forwardThe equation for the combustion of gaseous methanol is 2 CH3OH(g) + 3 O2(g) 2 CO2(g) + 4 H2O(g) (a) Using the bond dissociation enthalpies in Table 8.8, estimate the enthalpy change for this reaction. What is the enthalpy of combustion of one mole of gaseous methanol? (b) Compare your answer in part (a) with the value of tHcalculated using enthalpies of formation data.arrow_forwardWrite all resonance structures of chlorobenzene, C6H5Cl, a molecule with the same cyclic structure as benzene. In all structures, keep the CCl bond as a single bond. Which resonance structures are the most important?arrow_forward
- Describe the molecular structure around the indicated atom or atoms: (a) the sulfur atom in sulfuric acid, H2SO4[(HO)2SO2] (b) the chlorine atom in chloric acid, HClO3[HOClO2] (c) the oxygen atom in hydrogen peroxide, HNO3[HONO2] (d) the nitrogen atom in nitric acid, HNO3[HONO2] (e) the oxygen atom in the OH group in nitric acid, HNO3[HONO2] (f) the central oxygen atom in the ozone molecule, O3 (g) each of the carbon atoms in propyne, CH3CCH (h) the carbon atom in Freon, CCl2F2 (i) each of the carbon atoms in aliene, H2CCH2arrow_forwardEstimate the ionic radius of Cs+. The lattice energy of CsCl is 633 kJ/mol. For CsCl the Madelungconstant, M, is 1.763, and the Born exponent, n, is 10.7. The ionic radius of Cl– is known to be 1.81 Åarrow_forwardWrite the steps (reactions) for the Born-Haber cycle for MgCl2(s). Use the Born-Haber cycle to calculate the lattice energy of MgCl2(s). Some useful data to work with: For Mg: ΔΔHsub = 147 kJ/mol, IE1 and IE2 are 738 kJ/mol and 1450 kJ/mol, respectively. For chlorine: Bond energy = 243 kJ/mol, EA1 = -349 kJ/mol, respectively. The enthalpy of formation of magnesium chloride is -748.8 kJ/mol.arrow_forward
- Given the following information, find the lattice enthalpy (kJ/mol) of NaCl(s). ΔHf (NaCl) = -411 kJ/mol ΔHsublimation (Na) = 107 kJ/mol IE1 (Na) = 496 kJ/mol Bond Energy (Cl-Cl) = 244 kJ/mol EA1 (Cl) = -349 kJ/molarrow_forwardRank the following ionic compounds in order of lattice energy, from the least exothermic (least negative lattice enthalpy) to the most exothermic (most negative lattice enthalpy): BaO, NaF, MgO, CsBr Least exothermic ◆ ◆ 4 ◆ Most exothermicarrow_forwardThe lattice energy of NaCl is 769 kJ/mole. Which of the following is a correct statement about NaCl? When one mole each of gaseous Nat and CI- ions form solid NaCl, 769 kJ of heat is consumed. It requires 769 kJ to separate one mole of solid NaCl into one mole of each gaseous Na* and CI- ions. It requires 769 kJ to separate one mole of solid NaCl into gaseous one mole of Na* and two moles of CI- ions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY