For the circuit in Fig. 8.58, the capacitor voltage at t = 0 − (just before the switch is closed) is: (a) 0 V (b) 4 V (c) 8 V (d) 12 V Figure 8.58 For Review Questions 8.1 and 8.2.
For the circuit in Fig. 8.58, the capacitor voltage at t = 0 − (just before the switch is closed) is: (a) 0 V (b) 4 V (c) 8 V (d) 12 V Figure 8.58 For Review Questions 8.1 and 8.2.
For the circuit in Fig. 8.58, the capacitor voltage at t = 0− (just before the switch is closed) is:
(a) 0 V
(b) 4 V
(c) 8 V
(d) 12 V
Figure 8.58
For Review Questions 8.1 and 8.2.
Expert Solution & Answer
To determine
Choose the correct option to find the capacitor voltage at t=0− (just before the switch is closed).
Answer to Problem 1RQ
The correct option form the given choices is (a) 0 V.
Explanation of Solution
Calculation:
Redraw the given circuit as shown in Figure 1.
For the DC circuit, at the steady state condition when switch is open at t=0−, the capacitor acts as open circuit and the inductor act as short circuit. Therefore, the Figure 1 becomes as shown in Figure 2.
Since, the capacitor is open circuited, the voltage across the capacitor at t=0− is 0 V.
Therefore, the capacitor voltage at t=0− is vC(0−).
vC(0−)=0V
Therefore, the option (a) is correct and the options (b), (c), (d) are incorrect.
Conclusion:
Thus, the correct option from the given choices is (a) 0 V.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
R1
ww
+
R3
15+
www
R2
R4
ww
With the circuit diagram shown above and the values of the circuit elements listed below, find i1, 12, v1, and v2.
Is = 10A, R1 = 7 ohms, R2 = 9 ohms, R3 = 7 ohms, R4 = 8 ohms
(a) i1 = Number
A
(b) 12 = Number
A
(c) v1 = Number
V
(d) v2 = Number
V
15
ww
22
R2
ли
i4
1+
V4
R1
ww
R3
Solve for current i4 using superposition where R1 = 902, R2 = 36052, R3 =
360 V, and 15 = 5 A.
27052, V4 =
i4 due to voltage source (V4) alone:
Number
A
i4 due to current source (15) alone: Number
A
i4 = Number
PV
Array
Va
DC/DC
Converter
Control
Circuit
ис
V R
Fig. 2. Principle of using DC/DC converter to implement electronic load [2]
4.5
1.5
-0.5
SEPIC
Converters in SOM
0 0.2 0.4 0.6 0.8
Time
SEPIC
Converters in SOM
M
0 0.2 0.4 0.6 0.8
Time
Current
I-V Curve
(a)
8888888
P-V Curve
0 20 40 60 80
Voltage
0 20 40 60
Voltage
80
(b)
Fig. 3. Experimental results of I-V and P-V curves [2]
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
ENA 9.2(1)(En)(Alex) Sinusoids & Phasors - Explanation with Example 9.1 ,9.2 & PP 9.2; Author: Electrical Engineering Academy;https://www.youtube.com/watch?v=vX_LLNl-ZpU;License: Standard YouTube License, CC-BY
Electrical Engineering: Ch 10 Alternating Voltages & Phasors (8 of 82) What is a Phasor?; Author: Michel van Biezen;https://www.youtube.com/watch?v=2I1tF3ixNg0;License: Standard Youtube License