Concept explainers
A source-free RC circuit has R = 4 kΩ and C = 22 μF, and with the knowledge that v(0) = 5 V, (a) write an expression for v(t) valid for t > 0; (b) compute v(t) at t = 0, t = 50 ms, and t = 500 ms; and (c) calculate the energy stored in the capacitor at t = 0, t = 50 ms, and t = 500 ms.
(a)
Write an expression for
Answer to Problem 1E
The expression for
Explanation of Solution
Given Data:
The initial value of the voltage across the capacitor is
The resistance of
The capacitance of
Formula used:
The expression for the time constant for
Here,
The expression for the voltage across the capacitor for
Here,
Calculation:
Substitute
Substitute
Conclusion:
Thus, the expression for
(b)
Find
Answer to Problem 1E
The value of the voltage
Explanation of Solution
Given Data:
The time at which voltage has to be calculated is
Calculation:
Substitute
Substitute
Substitute
Conclusion:
Thus, the value of the voltage
(c)
Find the value of energy stored in the capacitor for different time periods.
Answer to Problem 1E
The energy stored in the capacitor at
Explanation of Solution
Given Data:
The time is
Formula used:
The expression for the energy stored in the capacitor is as follows.
Here,
Calculation:
Substitute
Substitute
Substitute
Conclusion:
Thus, the energy stored in the capacitor at
Want to see more full solutions like this?
Chapter 8 Solutions
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
Additional Engineering Textbook Solutions
SURVEY OF OPERATING SYSTEMS
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Vector Mechanics For Engineers
Starting Out with C++: Early Objects (9th Edition)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Modern Database Management
- Here the Req is 8 my prof solved it and got R3 is parallel to R4 in series with R2 and this combination is parallel to R1. i don't understand how he got these relationships. initially i did the opposite i took (R1//R4 + R2 ) + R3 but got the wrong answer why is it wrong? can you explain to me if there's a trick i can do to understand these questions better and know the configurations of the resistors in a better manner?arrow_forwardThe ROC of Laplace transform of x(t) = -e²u(t) + e02tu(t) + e.tu(t) is a) 0.1 0.2arrow_forwardFind the inverse Laplace transform of F(s) = s+1 (s-1)(s-2)(s-3) for each ROC: i) Re[s] =>3 ii) Re[s] =σ<1 iii) 1 < Re[s] =σ< 2.arrow_forward
- Find Laplace transform of x(t) = −e¯btu(−t) + e¯atu(t) (), and Rocarrow_forwardPlease solve in detailarrow_forwardA left-sided signal x(t)=-e¯bt u(-t): 0 == X(s) -e-bu(t)e-st dt =- -Le-c 1 -(b+o+jw)t dt = = -00 -∞ (a + b) + jw 1 s+b For this integral to converge, it is necessary that b +σ <0; i.e., ROC: Re[s]=σ < −b. 2 How ?arrow_forward
- A left-sided signal x(t)=-ebt u(-t): A right-sided signal x(t)=e¯at u(t) Find Laplace transform of x(t)=u(t)arrow_forwardFind Laplace transform of x(t) = −e¯btu(−t) + e¯atu(t) Find Laplace transform of x(t) = u(t)arrow_forwardExpert only, don't use artificial intelligence ,or screenshot of an AI solving stepsarrow_forward
- find inverse LT for the following functions 1- [0.2s+1.4] s2+1.96. 2. L-1 5s+1 Ls2-25. 4s+32 3. L- L(s2-16).arrow_forwardQ Figurel shows the creation of the Frequency Reuse Pattern Using the Cluster Size K (A) illustrates how i and j can be used to locate a co-channel cell. Juster Cluster CB Cluster 2 X=7(i=2,j=1)arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,