
Concept explainers
(a)
Find the value of
(a)

Answer to Problem 28E
At
Explanation of Solution
Formula used:
The expression for the current flowing through the resistor is as follows.
Here,
Calculation:
The redrawn circuit diagram is given in Figure 1.
Refer to the redrawn Figure 1.
The given circuit inductor is connected for 6 years prior to being flipped open at
Apply KCL at node 1.
Here,
Substitute
Rearrange the above equation for
The voltage across
Substitute
Conclusion:
Thus, at
(b)
Find the value of
(b)

Answer to Problem 28E
At
Explanation of Solution
Calculation:
The redrawn circuit diagram is given in Figure 2.
Refer to the redrawn Figure 2.
The expression for the voltage across the
Here,
Refer to the redrawn Figure 2.
The inductor does not allow sudden change in the current.
So, the current through inductor at
Apply KVL in the right side mesh.
Here,
Substitute
Rearrange for
Substitute
Conclusion:
Thus, at
(c)
Find the value of
(c)

Answer to Problem 28E
At
Explanation of Solution
Given data:
The time is
Formula used:
The expression for the equivalent resistor connected in series is as follows.
Here,
The expression for the time constant for
Here,
The expression for the current for
Here,
Calculation:
The redrawn circuit diagram is given in Figure 3.
Refer to the redrawn Figure 3.
The simplified diagram is shown in Figure 4.
Refer to the redrawn Figure 4.
Substitute
Substitute
Substitute
Rearrange the above equation for
Substitute
Conclusion:
Thus, at
(d)
Find the value of
(d)

Answer to Problem 28E
At
Explanation of Solution
Given Data:
The time is
Calculation:
Substitute
Substitute
Rearrange the above equation for
Substitute
Conclusion:
Thus, at
Want to see more full solutions like this?
Chapter 8 Solutions
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
- The efficiency of a motor is always low when it operates at 10 percent of its nominal power rating. Explain.arrow_forwardA dc motor connected to a 240 V line pro- duces a mechanical output of 160 hp. Knowing that the losses are 12 kW, calculate the input power and the line current.arrow_forwardA 115 V dc generator delivers 120 A to a load. If the generator has an efficiency of 81 percent, calculate the mechanical power needed to drive it [hp].arrow_forward
- A machine having class B insulation attains a temperature of 208°C (by resistance) in a torrid ambient temperature of 180°C. a. What is the temperature rise? b. Is the machine running too hot and, if so, by how much?arrow_forward1 Name the losses in a dc motor. 2 What causes iron losses and how can they be reduced? -3 Explain why the temperature of a machine increases as the load increases.arrow_forward20. A tractor weighing 14 kN with a wheel base of 3m carries an 8 kN load on its rear wheel. Compute the maximum bending moment and shear when crossing a 4.5 span. Consider the load only at the wheels.arrow_forward
- A 110-V, three-phase, Y-connected, 8 pole, 48-slot, 6000-rpm, double-layer wound chronoun anı vonorotor boo 10 +1 urn or oilarrow_forward-7 Name some of the factors that contribute to the deterioration of organic insulators. -8 A motor is built with class H insulation. What maximum hot-spot temperature can it withstand?arrow_forwardCalculate the full-load current of a 250 hp, 230 V dc motor having an efficiency of 92 percent.arrow_forward
- Assignment #2 A 110-V, three-phase, Y-connected, 8 pole, 48-slot, 6000-rpm, double-layer wound, synchronous generator has 12 turns per coil. If one side of the coil is in slot 1, the other side is in slot 6. There are 4 parallel paths. When the generator delivers the rated load at a line voltage of 110 V, the voltage regulation is 5%. What is the flux per pole? Draw two consecutive phasegroups of one of the phase windings and connect them (a) in series and (b) in parallel showing the Start (S) and Finish (F) of both connections. (A separate drawing for each connection)arrow_forward3-4 Transmissiva Live of 120km has R= 0.2 ~2/15 X= 0.8 -2/km Y = 15H/6 5/km The line is supplies a load of 45 kV, SOMW, 0.8 lead p.f find sending voltage, Sending Current p.f. Sanding Voltage Regulation ⑨Voltage 5 Ⓒ charching coming! изу usy π cct लेarrow_forwardA (medium) single phase transmission line 100 km long has the following constants : Resistance/km = 0.25 Q; Susceptance/km = 14 × 10° siemen ; Reactance/km = 0.8 Receiving end line voltage = 66,000 V Assuming that the total capacitance of the line is localised at the receiving end alone, determine (i) the sending end current (ii) the sending end voltage (iii) regulation and (iv) supply power factor. The line is delivering 15,000 kW at 0.8 power factor Lead Draw the phasor diagram to illustrate your calculations.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





