
Concept explainers
(a)
Interpretation: The pH of the solution needs to be calculated when 0 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(a)

Explanation of Solution
In the given solution, HCN is a weak acid and KOH is strong base. Molarity of HCN is 0.1 M and volume is 100 mL.
The acid dissociation constant of HCN is
The number of moles of HCN can be calculated using molarity and volume as follows:
When 0 mL of KOH is added, the solution only contains a weak acid.
The equilibrium reaction for the dissociation of HCN is represented as follows:
The expression for equilibrium constant will be:
The ICE table for the reaction can be represented as follows:
The value of x can be neglected from equilibrium constant of HCN as the dissociation constant is very small.
Thus,
The equilibrium concentration of hydrogen ion is
Now, the pH of solution can be calculated as follows:
Thus, the pH of the solution when 0.0 mL of KOH added is 5.1.
(b)
Interpretation: The pH of the solution needs to be calculated when 50 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(b)

Explanation of Solution
When 50 mL of KOH is added the number of moles of hydroxide ion can be calculated as follows:
Here, 5.00 mmol of KOH reacts completely with 5.00 mmol of HCN. The ICE table can be represented as follows:
The remaining solution will become a buffer solution. The
Since, volume is same for both thus,
Thus, the pH of the solution when 50.0 mL of KOH is added to 100 0 mL of HCN is 9.2.
(c)
Interpretation: The pH of the solution needs to be calculated when 75 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(c)

Explanation of Solution
The number of moles of HCN initially present is 10 mmol. Now, number of moles of 75 mL hydroxide ion can be calculated as follows:
Now, 7.50 mmol of KOH reacts with 7.50 mmol of HCN. The number of moles of HCl remaining will be 10-7.5=2.5 mmol and the number of moles of CN- formed will be 7.50 mmol.
The pH of solution can be calculated as follows:
Thus, pH of the solution after addition of 75.0 mL KOH is 9.7.
(d)
Interpretation: The pH of the solution needs to be calculated at equivalence point.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(d)

Explanation of Solution
At the equivalence point, the number of moles of HCN added and KOH is same. Thus, the number of moles of KOH added will be 10 mmol. The volume of KOH added can be calculated from number of moles and molarity as follows:
If equal moles react thus, the number of moles of
The total volume will be sum of volume of HCl and KOH as follows:
For 10.0 mmol, the molarity can be calculated as follows:
The ICE table can be represented as follows:
The hydrolysis of
The hydrolysis constant value for
For the above reaction, the expression can be represented as follows:
The above value of x is equal to the concentration of hydroxide ion in the solution. Thus, the pH of the solution can be calculated as follows:
Thus, the pH of solution at equivalence point is 10.95.
(e)
Interpretation: The pH of the solution needs to be calculated when 125 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(e)

Explanation of Solution
The number of moles of KOH can be calculated as follows:
Here, 10.0 mmol of KOH reacts with 10.0 mmol of HCN thus, the remaining number of moles of KOH will be 2.5 mmol.
Also, 10.0 mmol of
The molarity of KOH can be calculated as follows:
The pOH of the solution can be calculated by taking negative log of hydroxide ion conecntartion.
The pH of the solution can be calculated as follows:
Thus, the pH of the solution is 12.04.
Want to see more full solutions like this?
Chapter 8 Solutions
EBK CHEMICAL PRINCIPLES
- PROBLEMS Q1) Label the following salts as either acidic, basic, or neutral a) Fe(NOx) c) AlBr b) NH.CH COO d) HCOON (1/2 mark each) e) Fes f) NaBr Q2) What is the pH of a 0.0750 M solution of sulphuric acid?arrow_forward8. Draw all the resonance forms for each of the fling molecules or ions, and indicate the major contributor in each case, or if they are equivalent (45) (2) -PH2 سمة مدarrow_forwardA J то گای ه +0 Also calculate the amount of starting materials chlorobenzaldehyde and p-chloroacetophenone required to prepare 400 mg of the given chalcone product 1, 3-bis(4-chlorophenyl)prop-2-en-1-one molar mass ok 1,3-bis(4-Chlorophenyl) prop-2-en-1-one = 277.1591m01 number of moles= 0.400/277.15 = 0.00144 moles 2 x 0.00 144=0.00288 moves arams of acetophenone = 0.00144 X 120.16 = 0.1739 0.1739x2=0.3469 grams of benzaldehyde = 0.00144X106.12=0.1539 0.1539x2 = 0.3069 Starting materials: 0.3469 Ox acetophenone, 0.3069 of benzaldehyde 3arrow_forward
- 1. Answer the questions about the following reaction: (a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this reaction. Be sure to include any relevant stereochemistry in the product structure. + SK F Br + (b) In which solvent would this reaction proceed the fastest (Circle one) Methanol Acetone (c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest other products that are formed? Draw them in the box provided.arrow_forward3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗarrow_forward2. Draw the arrows required to make the following reactions occur. Please ensure your arrows point from exactly where you want to exactly where you want. If it is unclear from where arrows start or where they end, only partial credit will be given. Note: You may need to draw in lone pairs before drawing the arrows. A. B. H-Br 人 C Θ CI H Cl Θ + Br Oarrow_forward
- 4. For the reactions below, draw the expected product. Be sure to indicate relevant stereochemistry or formal charges in the product structure. a) CI, H e b) H lux ligh Br 'Harrow_forwardArrange the solutions in order of increasing acidity. (Note that K (HF) = 6.8 x 10 and K (NH3) = 1.8 × 10-5) Rank solutions from least acidity to greatest acidity. To rank items as equivalent, overlap them. ▸ View Available Hint(s) Least acidity NH&F NaBr NaOH NH,Br NaCIO Reset Greatest acidityarrow_forward1. Consider the following molecular-level diagrams of a titration. O-HA molecule -Aion °° о ° (a) о (b) (c) (d) a. Which diagram best illustrates the microscopic representation for the EQUIVALENCE POINT in a titration of a weak acid (HA) with sodium. hydroxide? (e)arrow_forward
- Answers to the remaining 6 questions will be hand-drawn on paper and submitted as a single file upload below: Review of this week's reaction: H₂NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H₂O ---> H₂NC(=NH)N(CH3)CH2COOH (creatine) Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts) Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts) Q9. Explain with drawing why the C-N bond shown in creatine structure below can or cannot rotate. (3 pts) NH2(C=NH)-N(CH)CH2COOH This bond Q10. Draw two tautomers of creatine using line structures. (Note: this question is valid because problem Q9 is valid). (4 pts) Q11. Mechanism. After seeing and understanding the mechanism of creatine synthesis, students should be ready to understand the first half of one of the Grignard reactions presented in a past…arrow_forwardPropose a synthesis pathway for the following transformations. b) c) d)arrow_forwardThe rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





