Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 137P
Cooling water is pumped from a reservoir to rock drills on a construction job using the pipe system shown. The flow rate must be 600 gpm and water must leave the spray nozzle at 120 ft/s. Calculate the minimum pressure needed at the pump outlet. Estimate the required power input if the pump efficiency is 70 percent.
P8.137
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
m².
-5
S
Figure shows a portion of a fire
protection system in which a pump
draws water at 60°F (v =1.21 ×10¯
from a reservoir and delivers it to a point
B at the flow rate of 1500 gal/min.
Calculate the required height h of the
water level in the tank in order to
maintain 5.0 Psig pressure at point A
h
25 ft
A
Pump
2600-ft-long
8-in Schedule
40 steel pipe
Flow
Flow
45-ft-long
10-in Schedule 40 steel pipe
B
2. Water from a reservoir is pump over a hill through a pipe 900mm in diameter and a
pressure of one kg/cm² is maintained at the pipe discharge where the pipe is 85m from the
pump centerline. The pumps have a positive suction head of 5m. Pumping rate or the pump at
1000 rpm is 1.5m³/sec. Friction losses is equivalent to 3m of head loss. What is the head that
should the pump cover for the system?
The suction water level of a reservoir is 5 m above pump centerline and the discharge water level is 50 m above pump centerline. The discharge is 0.2 m^3/s with suction pipe of 100 mm diameter and 90 mm diameter discharge pipe. The total head loss is 50% of the velocity head at suction pipe. If pump runs at 360 rpm, find the torque (in kN-m) developed by the shaft of the motor if pump efficiency is 76%.
Chapter 8 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A(n) ______ constructor is one that requires no arguments.
Starting Out with C++: Early Objects (9th Edition)
How does the typing system of PHP and JavaScript differ from that of Java?
Concepts Of Programming Languages
If an existing file is opened in append mode, What happens to the file's existing contents?
Starting Out with Python (4th Edition)
Porter’s competitive forces model: The model is used to provide a general view about the firms, the competitors...
Management Information Systems: Managing The Digital Firm (16th Edition)
Write an SQL statement to display the OwnerLastName, OwnerFirstName, PetName, PetType, PetBreed, and AverageLif...
Database Concepts (8th Edition)
What are some of the attractive features of ultrasonic welding?
Degarmo's Materials And Processes In Manufacturing
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pump is being utilized to deliver a flow rate of 500 li/sec from a reservoir of surface elevation of 65 m to another reservoir of surface elevation 95 m.The total length and diameter of the suction and discharge pipes are 500 mm, 1500 m and 30 mm, 1000 m respectively. Assume a head lose of 2 meters per 100 m length of the suction pipe and 3 m per 100 m length of the discharge pipe. What is the required horsepower of the pump? **provide complete solution using bernoullis equation..provide illustration with labels like datum line and such** Show all formula derivationarrow_forwardWater at 20°C is being pumped from tank 1 to tank 2 with given conditions. Calculate the power of pump used in the system. (Both tanks are open to atmosphere). Volume flow rate = 10L/s Pipe material = cast ironarrow_forwardFLUID MECH Support your answer with the appropriate solution and diagram. 7. Water from the reservoir is pumped over hill through a 90 cm diameter pipe, and the pressure of 200 kPa is maintained at the summit, where the pipe is 90 cm above the reservoir. The flow is 1.40 m^3/s with a head loss of 3.0 m between the reservoir and summit. If the pump is 90% efficient, what is the input power furnished to the water in KW. A. 1865 B. 1954 C. 1734 D. 1923.arrow_forward
- From THERMOFLUIDS, M. MASSOUD Please hep me solve this problem i will really appreciate itarrow_forwardWater from a reservoir passes over a dam through a turbine and discharges from a 70-cm ID pipe at a point 95 m below the reservoir surface. The turbine delivers 0.950 MW. Calculate the required flow of water in m3/min if friction is neglected. If friction were included would a higher or lower flow rate be required? (Note: The equation you will solve in this problem has multiple roots. Find a solution less than 1.0 m3/s.) V=___m^3/min?arrow_forwardThe pressure drop across a turbine is 25 psi. The flow rate is 55gal/min. Calculate the power output of the turbine.arrow_forward
- Problem 01 Water from a large reservoir is discharge to atmosphere through a 100 mm diameter pipe and 450 m long. The entry from the reservoir to the pipe is sharp and the outlet is 12m below the surface level in the reservoir. Taking f=0.01 in the Darcy formula, calculate the discharge. Problem 02 Water is discharged from a reservoir into the atmosphere through a pipe 39m long. There is a sharp entrance to the pipe and diameter is 50 mm for 15 m long from the entrance. The pipe then enlarge suddenly to 75 mm in diameter for the remainder of its length. Taking into account the loss of head at entry and at the enlargement, calculate the difference of level between the surface of the reservoir and the pipe exit, which will maintain a flow of 2.8 dm³/sec. Take f as 0.0048 for the 50 mm pipe and 0.0058 for the 75 mm pipe. Problem 03 V d Water is pumped with a velocity 2, 8 m/s in a 150 mm diameter pipe. The H₂ branches at A into a 75 mm diameter pipe, 50 m long with f-0,008, and a the 100…arrow_forwardSaturated water at 310K is being pumped from a tank to an elevated tank at the rate of 7L/s. All of the piping is in 5-in. schedule 40 steel pipe. If the 2 fittings used is 90° ell standard long radius, The pump has an efficiency of 80%. Calculate the kW power needed for the pump. * 125 m 12 m -5 1 50 m 5-in. pipe schedule pump Your answerarrow_forwardExercise Problem No. 1: An agricultural land install a pump with a 218mm diameter suction pipe and a 200mm diameter discharge pipe. Respectively each pressure reads 1.12 bars and 0.96 bars. The water flow measured 12,500 liters/min.at normal temperature. Calculate the following: 1.Head at the discharge side, m 2. Velocity Head, m 3. Total Head of the pump, marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license