Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 128P
One-quarter of a cubic meter per second of liquid at 20°C is to be carried between two tanks having a difference of surface elevation of 9 m. If the pipeline is smooth and 90 m long, what pipe size is required if the liquid is (a) crude oil, (b) water?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3/hour. The length of the pipe is 35m and there are 2 elbows. Calculate the pump power requirement. The properties of the solution are density 975 kg/m3 and viscosity 4x 10-4 Pa s.
a. Reynolds number =
b. Energy Loss along a straight pipe = J/kg.
c. Energy Loss in turns = J/kg.
d. Total energy to overcome friction = J/kg.
e. Energy to raise water to height = J/kg.
f. Theoretical energy requirement of the pump kg ethanol/second = J/kg.
g. Actual pump power requirement = watt.
The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 10 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s.
a. Reynold number = Answer
b. Loss of Energy along the straight pipe = Answer J / kg.
c. Losing Energy at curves = Answer J / kg.
d. Total energy to overcome friction = Answer J / kg.
e. Energy to increase water according to height = Answer J / kg.
f. The theoretical energy requirement of the pump ethanol / second = Answer J / kg.
g. Actual pump power requirement = Answer watt.
C2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The diameter at the smaller end is 245 mm and at the larger end is 467 mm. The length of the conical tube is 1.8 m and the flow rate of the oil is 128 liters/s. The pressure at the smaller end is equivalent to a head of 9.7 m of oil.
Considering the following two cases:
(1) Neglecting friction, (without head loss) determine (i) the velocity at the smaller end in m/s, (ii) the velocity at the larger end in m/s, and (iii) the pressure at the larger end of the tube.
(2) If a head loss (with head loss) in the tube is hL= 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of oil and (v) the pressure at the larger end of the tube.
Chapter 8 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Given that y=ax3+7, which of the following are correct Java statements for this equations? int y = (a x) x (...
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Big data Big data describes datasets with huge volumes that are beyond the ability of typical database manageme...
Management Information Systems: Managing The Digital Firm (16th Edition)
Define each of the following terms: supertype subtype specialization entity cluster completeness constraint enh...
Modern Database Management
Write a sequence of instructions (using the operations SELECT, PROJECT, and JOIN) to retrieve the Name and JobT...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Determine the maximum normal stress developed in the bar when it is subjected to a tension of P = 8kN.
Mechanics of Materials (10th Edition)
What is an. abstract class?
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- C2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The diameter at the smaller end is 245 mm and at the larger end is 467 mm. The length of the conical tube is 1.8 m and the flow rate of the oil is 128 liters/s. The pressure at the smaller end is equivalent to a head of 9.7 m of oil. Considering the following two cases: (1) Neglecting friction, (without head loss) determine (i) the velocity at the smaller end in m/s, (ii) the velocity at the larger end in m/s, and (iii) the pressure at the larger end of the tube. (2) If a head loss (with head loss) in the tube is hL= 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of oil and (v) the pressure at the larger end of the tube.arrow_forwardThe diameter of a pipeline is 6-in at A and 18-in at B. A is 11 ft. lower than B. If the pressure at A is 10 lb per sq. in and at B 7 lb per sq. in when the flow is 2.5 cfs, determine the frictional loss between A and B when the liquid is water. Topic: FUNDAMENTALS OF FLUID FLOWarrow_forwardIt is desired to pump 1000 gal/hr of gasoline (specific gravity of 0.85) at a temperature of 50 farenheit(viscosity=0.8 centripoises) from the bottom of a storage tank at ground level to the top of a fractionating column 90 ft high .The total length of pipe(actual + equivalent length due to fittings) is 125ft.The pipe line is 2 in standard steel.Calculate the motor size(expressed the horsepower) needed,if the effeciency of the pump and drived is assumed to be 55 %.arrow_forward
- Water is pumped at a rate of 21.4 m/s from tank (A) and out through a 300.5 m pipe to tank (B). The surface roughness of the pipe is 0.046 mm. When the water levels are as shown in the given figure, the head provided by the pump is 70 m, Calculate the pipe diameter (mm) if the water temperature is 10°C (do not assume the water mass density and the ViScosity), Usef 0.02 for the first iteration and try only one more iterations (two in total) by using Swamee and Jain formula. Elevation 135 Elevation 140 m Tank (B) Tievation 100m Tank LA) Jund: Elevitions in Write the answer for any numbers after the declmalarrow_forwardAnswer the problem correctly and provide complete and readable solutions. If you can explain the process (briefly), please do so. Thank you!arrow_forwardC2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The velocity at the smaller end is 4.9 m/s and at the larger end is 2.5 m/s. The length of the conical tube is 1.3 m and the flow rate of the water is 127 liters/s. The pressure at the smaller end is equivalent to a head of 10.1 m of water. Considering the following two cases: (1) Neglecting friction, (without head loss) determine (i) the diameter at the smaller end in meter, (ii) the diameter at the larger end in meter, and (ii) the pressure at the larger end of the tube in m of water. (2) If a head loss (with head loss)in the tube,h = 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of water and (v) the pressure at the larger end of the tube in m of water. 6) the diameter at the smaller end in meter (ii) the diameter at the larger end in meter (iii) the pressure head at the larger end of the…arrow_forward
- The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s. a. Reynold number = ..... b. Energy Loss along the straight pipe = ..... J / kg. c. Energy Loss at curves = ..... J / kg. d. Total energy to overcome friction = ..... J / kg. e. Energy to raise water according to height = ..... J / kg. f. The theoretical energy requirement for the pump is kg ethanol / second = ..... J / kg. g. Actual pump power requirement = ..... watts.arrow_forwardWater is pumped at a rate of 24.33 m/s from tank (A) and out through a 298.05 m pipe to tank (B). The surface roughness of the pipe is 0.046 mm. When the water levels are as shown in the given figure, the head provided by the pump is 70.54 m. Calculate the pipe diameter (mm) if the water temperature is 10°C (do not assume the water mass density and the viscosity). Use f = 0.02 for the first iteration and try only one more iterations (two in total) by using Swamee and Jain formula. Elevation Elevatjon - = 140 m = 135 m Tank (B) Elevation = 100 m Tank (A) pump Elevation = 95 marrow_forwardA pipe is often used to assess the flow rate of water in the center of a pipe with an internal diameter of 102.3 mm at 20°C (density = 998.3 kg/m3, viscosity = 1.005 CP). The pitot tube coefficient is 0.98, and the manometer reading is 10 mm of mercury at 20°C (density = 13,545. 85 kg/m3). Compute the velocity at the center and the water's volumetric flow ratearrow_forward
- Sketch the energy grade line (EGL) and hydraulic grade line (HGL) for the pipeline below.arrow_forward171 about industrial piping HOW IS THE HYDROSTATIC TEST PRESSURE DEFINED IN INDUSTRIAL PIPELINES?arrow_forwardShow complete solution and formulas used. Show the schematic diagram too. Calculate the required pipe diameter to avoid cavitation, if the pump delivers Q = 30US gallon/min water from a closed tank, where the pressure (above the water level) is p = 40kPa. The equivalent length of the smoothened concrete pipe on the suction side is 12m while the suction flange of the pump is 8m below the water level. The vapour pressure at the given water temperature is 2.8kPa. The required net positive suction head is NPSHr = 3.2m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY