Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 133P
What diameter water pipe is required to handle 0.075 m3/s and a 500 kPa pressure drop? The pipe length is 175 m, and roughness is 2.5 mm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the pressure drop(kPa) in a 29m length of pipe with a triangular cross section.Q = 22m3/minf = 0.017
This is merely a past paper question please assist
I think answer is 245.
But don't Copy the Answer.
Urgent
Chapter 8 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
If they are at the positions shown when t = 0, determine the time when the cars are side by side, and the time ...
Engineering Mechanics: Dynamics (14th Edition)
In each case, determine the internal normal force between lettered points on the bar. Draw all necessary free-b...
Statics and Mechanics of Materials (5th Edition)
The volumetric flow rate and discharge velocity of the air.
Introduction to Heat Transfer
Determine the normal stress in each member of the truss structure. All joints are ball joint, and the material ...
Introduction To Finite Element Analysis And Design
What makes the process that makes TiC coatings for tools a problem? See equation 22.1.
DeGarmo's Materials and Processes in Manufacturing
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In this problem should we add the friction losses in Bernoullis equation ? also, shouldnt we divide by gc=32.17? Please help, I'm confused arrow_forwardPlease state all the assumptions first. Thank youarrow_forwardThe ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 10 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s. a. Reynold number = Answer b. Loss of Energy along the straight pipe = Answer J / kg. c. Losing Energy at curves = Answer J / kg. d. Total energy to overcome friction = Answer J / kg. e. Energy to increase water according to height = Answer J / kg. f. The theoretical energy requirement of the pump ethanol / second = Answer J / kg. g. Actual pump power requirement = Answer watt.arrow_forward
- i just need final answer The water is delivered with piping system given in the figure below. The elevation difference between enteringsection and tank is 121,63 m. Estimate the gage pressure (MPa) at point 1. (Note: For water at 20°C, takep=998 kg/m and p=0.001 kg/ms.)arrow_forward1. in a section of horizontal piper with a diameter of 3cm the pressure is 5.21 kpa and water is flowing with a speed of 1.50m/s. the pipe narrows to 2.50cm. what is the pressure in the narrower region if water behaves like an ideal fluid of sensity 1000kg/m3 2. tensile stress a. the ratio of elasic modules to strain b. the applied force per crosssectional area c. the ratio of change in length to the orig length d. the strain per unit legth e. the same as forcearrow_forwardProblem : Taking into account only the local resistances, detemine the level difference in the tank H. Given: flow rate Q=25 l/sec, dz=120 mm, di=90 mm, Svedg=4. Build up the piezometric line.arrow_forward
- dhe low + DarucienCatculation ot (sesistance zomes Hame pumpseRue, operoting pr 3. Problems: two vessels are connected by a pipe of the diameter of d=100 mm and length of l=12 m, made of steel. Calculate the level difference H of water in the vessels. Flow rate is Q=300 m/h, temperature t=20°C. Take into account the all energy losses. Grei=3. d.!arrow_forwardFind the pressure at point 2 given the isometric drawing of the commercial steel pipeline indicating the straight pipes length and with the following data below:Loss coefficients:• check valve, k = 5.0• gate valves, k = 0.20• elbows, k = 0.75• flowmeter, k = 13.0Pump flowrate = 10 m3/hrFluid power adding by pump = 3.7 HPPressure at point 1 = 60 kPagPipe inside diameter = 50mmViscosity = 0.17 Pa.sSpecific gravity = 0.89Pipe inside surface roughness = 0.00015 ft.arrow_forwardIn the figure below, assume the pipe from B to C has a diameter of 4-inches, (f = 0.035), and length of 18-feet. The pipe from DE is 187-feet, has a diameter of 4-inches and friction factor of 0.035. The Az = 69-feet. The elevation of C is 14-feet above the lower water surface. If the pressure head @ C is to be no less than (-) 20 feet, and the pump has 63% efficiency, what horsepower must be supplied to the pump in order to convey flow through the system? (Kent = 0.8) Assume a submerged exit. Azarrow_forward
- The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3/hour. The length of the pipe is 35m and there are 2 elbows. Calculate the pump power requirement. The properties of the solution are density 975 kg/m3 and viscosity 4x 10-4 Pa s. a. Reynolds number = b. Energy Loss along a straight pipe = J/kg. c. Energy Loss in turns = J/kg. d. Total energy to overcome friction = J/kg. e. Energy to raise water to height = J/kg. f. Theoretical energy requirement of the pump kg ethanol/second = J/kg. g. Actual pump power requirement = watt.arrow_forwardA 2-ft inner diameter (ID) metal pipe has a roughness ε = 0.003 ft, and carries water(μ = 1 cP) at 15 ft/s. A fellow engineer suggests that the flow rate could be increased using asmooth plastic liner (i.e., drawn tubing) that reduces the ID to 1.9 ft.(a) Calculate the pressure drop in psi/ft both without and with the liner at theoriginal volumetric flow rate. [ answers should be~ 0.016 psi/ft, ~ 0.01 psi/ft](b) Calculate the flow rate in gpm both without and with the liner if the pressure dropis maintained at 0.01 psi/ft in both cases. [answers should be~ 16,500 gpm, ~ 21,700 gpmPlease use the right equations to solve correctlyarrow_forwardA 2-ft inner diameter (ID) metal pipe has a roughness ε = 0.003 ft, and carries water(μ = 1 cP) at 15 ft/s. A fellow engineer suggests that the flow rate could be increased using asmooth plastic liner (i.e., drawn tubing) that reduces the ID to 1.9 ft.(a) Calculate the pressure drop in psi/ft both without and with the liner at theoriginal volumetric flow rate. [ answers should be~ 0.016 psi/ft, ~ 0.01 psi/ft](b) Calculate the flow rate in gpm both without and with the liner if the pressure dropis maintained at 0.01 psi/ft in both cases. [answers should be~ 16,500 gpm, ~ 21,700 gpmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license