Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 12P
A 1.50-kg object is held 1.20 m above a relaxed massless, vertical spring with a force constant of 320 N/m. The object is dropped onto the spring. (a) How far does the object compress the spring? (b) What If? Repeat part (a), but this time assume a constant air-resistance force of 0.700 N acts on the object during its motion. (c) What If? How far does the object compress the spring if the same experiment is performed on the Moon, where g = 1.63 m/s2 and air resistance is neglected?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 7.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.900 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)?
61.When a 3.0-kg block is pushed against a massless spring of force constant constant
4.5x10' N/m, the spring is compressed 8.0 cm. The block is released, and it slides 2.0 m (from
the point at which it is released) across a horizontal surface before friction stops it. What is the
coefficient of kinetic friction between the block and the surface?
Solution
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - Prob. 6P
Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - Prob. 9PCh. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 13PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - You have spent a long day skiing and are tired....Ch. 8 - The electric motor of a model train accelerates...Ch. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Prob. 19PCh. 8 - There is a 5K event coming up in your town. While...Ch. 8 - Prob. 21PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A block of mass m = 200 g is released from rest at...Ch. 8 - Prob. 24APCh. 8 - Prob. 25APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - Why is the following situation impossible? A...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 33APCh. 8 - Prob. 34APCh. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - Prob. 36APCh. 8 - Prob. 37APCh. 8 - Review. Why is the following situation impossible?...Ch. 8 - Prob. 39APCh. 8 - A pendulum, comprising a light string of length L...Ch. 8 - Prob. 41APCh. 8 - Prob. 42APCh. 8 - Prob. 43APCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 45CPCh. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 47CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P7.68a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P7.68b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P7.68c). The object is then forced toward the left by the spring (Fig. P7.68d) and continues to move in that direction beyond the springs unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P7.68e). Find (a) the distance of compression d, (b) the speed v at the unstretched position when the object is moving to the left (Fig. P7.68d), and (c) the distance D where the object comes to rest. Figure P7.68arrow_forwardA 6 000-kg freight car rolls along rails with negligible friction. The car is brought to rest by a combination of two coiled springs as illustrated in Figure P6.27 (page 188). Both springs are described by Hookes law and have spring constants k1 = 1 600 N/m and k2, = 3 400 N/m. After the first spring compresses a distance of 30.0 cm, the second spring acts with the first to increase the force as additional compression occurs as shown in the graph. The car comes to rest 50.0 cm after first contacting the two-spring system. Find the cars initial speed.arrow_forwardWhy is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The hall launcher in the machine sends metal halls up one side of the machine and then into play. The spring in the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting. Figure P7.44arrow_forward
- Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The ball launcher in the machine sends metal balls up one side of the machine and then into play. The spring in the launcher (Fig. P6.60) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.arrow_forwardA block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardAssume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 50 cm and holds it in position with a force of 150 N. If the mass of the arrow is 50 g and the “spring” is massless, what is the speed of the arrow immediately after it leaves the bow?arrow_forward
- A toy cannon uses a spring to project a 5.30-g soft rubber ball. The spring is originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 0 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? (b) At what point does the hall have maximum speed? (c) What is this maximum speed?arrow_forwardAt 220 m, the bungee jump at the Verzasca Dam in Locarno, Switzerland, is one of the highest jumps on record. The length of the elastic cord, which can be modeled as having negligible mass and obeying Hookes law, has to be precisely tailored to each jumper because the margin of error at the bottom of the dam is less than 10.0 m. Kristin prepares for her jump by first hanging at rest from a 10.0-m length of the cord and is observed to stretch the rope to a total length of 12.5 m. a. What length of cord should Kristin use for her jump to be exactly 220 m? b. What is the maximum acceleration she will experience during her jump?arrow_forwardIf the net work done by external forces on a particle is zero, which of the following statements about the particle must be true? (a) Its velocity is zero. (b) Its velocity is decreased. (c) Its velocity is unchanged. (d) Its speed is unchanged. (e) More information is needed.arrow_forward
- A light spring with spring constant 1.20 103 N/m hangs from an elevated support. From its lower end hangs a second light spring, which has spring constant 1.80 103 N/m. A 1.50-kg object hangs at rest from the lower end of the second spring, (a) Find the total extension distance of the pair of springs, (b) Find the effective spring constant of the pair of springs as a system. We describe these springs as being in series. Hint: Consider the forces on each spring separately.arrow_forwardYou are lying in your bedroom, resting after doing your physics homework. As you stare at your ceiling, you come up with the idea for a new game. You grab a dart with a sticky nose and a mass of 19.0 g. You also grab a spring that has been lying on your desk from some previous project. You paint a target pattern on your ceiling. Your new game is to place the spring vertically on the floor, place the sticky-nose dart facing upward on the spring, and push the spring downward until the coils all press together, as on the right in Figure P7.26. You will then release the spring, firing the dart up toward the target on your ceiling, where its sticky nose will make it hang from the ceiling. The spring has an uncompressed end-to-end length of 5.00 cm, as shown on the left in Figure P7.26, and can be compressed to an end-to-end length of 1.00 cm when the coils are all pressed together. Before trying the game, you hold the upper end of the spring in one hand and hang a bundle of ten identical darts from the lower end of the spring. The spring extends by 1.00 cm due to the weight of the darts. You are so excited about the new game that, before doing a test of the game, you run out to gather your friends to show them. When your friends are in your room watching and you show them the first firing of your new game, why are you embarrassed?arrow_forwardIn a needle biopsy, a narrow strip of tissue is extracted from a patient with a hollow needle. Rather than being pushed by hand, to ensure a clean cut the needle can be fired into the patients body by a spring. Assume the needle has mass 5.60 g, the light spring has force constant 375 N/m, and the spring is originally compressed 8.10 cm to project the needle horizontally without friction. The tip of the needle then moves through 2.40 cm of skin and soft tissue, which exerts a resistive force of 7.60 N on it. Next, the needle cuts 3.50 cm into an organ, which exerts a backward force of 9.20 N on it. Find (a) the maximum speed of the needle and (b) the speed at which a flange on the back end of the needle runs into a stop, set to limit the penetration to 5.90 cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY