Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 45CP
(a)
To determine
To determine: The acceleration of the board at the moment its front end has travelled a distance
(b)
To determine
To determine: The initial speed of the board if the board stops at the moment its back end reaches the boundary.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 210 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 103 m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 350 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force (in N) for the last 20 m for the empty test car. N (b) Find the highest speed (in m/s) reached by the car during the final section of track length…
Pregnancy dramatically affects the energetics of swimming for female dolphins. Dolphins have an approximately circular cross section and are very streamlined. A typical dolphin has a girth—the circumference at the widest part of the body—of 1.4 m and a drag coefficient of 0.090. Advanced pregnancy increases the girth to 1.7 m and, with a less streamlined shape, the drag coefficient to 0.22. Dolphins typically cruise at a speed of 3.4 m/s
a.What will be the cruising speed of a pregnant dolphin if she swims with the same power output as before becoming pregnant?
A particle can slide along a track with elevated ends and a flat central part, as shown in the figure. The flat part has length L = 45.0 cm. The curved portions of the track are frictionless, but for the flat part the coefficient of kinetic friction is μk = 0.2 . The particle is released from rest at point A, which is at height h = L/ 2 . How far from the left edge of the flat part does the particle finally stop?
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - Prob. 6P
Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - Prob. 9PCh. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 13PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - You have spent a long day skiing and are tired....Ch. 8 - The electric motor of a model train accelerates...Ch. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Prob. 19PCh. 8 - There is a 5K event coming up in your town. While...Ch. 8 - Prob. 21PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A block of mass m = 200 g is released from rest at...Ch. 8 - Prob. 24APCh. 8 - Prob. 25APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - Why is the following situation impossible? A...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 33APCh. 8 - Prob. 34APCh. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - Prob. 36APCh. 8 - Prob. 37APCh. 8 - Review. Why is the following situation impossible?...Ch. 8 - Prob. 39APCh. 8 - A pendulum, comprising a light string of length L...Ch. 8 - Prob. 41APCh. 8 - Prob. 42APCh. 8 - Prob. 43APCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 45CPCh. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 47CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To give a pet hamster exercise, some people put the hamster in a ventilated ball andallow it roam around the house(Fig. P13.66). When a hamsteris in such a ball, it can cross atypical room in a few minutes.Estimate the total kinetic energyin the ball-hamster system. FIGURE P13.66 Problems 66 and 67arrow_forwardA puck of mass 0.170 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and puck of 0.150. If the puck is moving at an initial speed of 12.0 m/s, (a) what is the force of kinetic friction? (b) What is the acceleration of the puck? (c) How long does it take for the puck to come to rest? (d) What distance does the puck travel during that time? (e) What total work does friction do on the puck? (f) What average power does friction generate in the puck during that time? (g) What instantaneous power does friction generate in the puck when the velocity is 6.00 m/s? (See Sections 2.5, 4.6, 5.1, and 5.6.)arrow_forwardA suspicious physics student watches a stunt performed at an ice show. In the stunt, a performer shoots an arrow into a bale of hay (Fig. P11.24). Another performer rides on the bale of hay like a cowboy. After the arrow enters the bale, the balearrow system slides roughly 5 m along the ice. Estimate the initial speed of the arrow. Is there a trick to this stunt? FIGURE P11.24arrow_forward
- A particle can slide along a track with elevated ends and a flat central part, as shown in the figure. The flat part has length L = 45.0 cm. The curved portions of the track are frictionless, but for the flat part the coefficient of kinetic friction is μk = 0.2 . The particle is released from rest at point A, which is at height h = L/ 2 . How far from the left edge of the flat part does the particle finally stop?arrow_forward20. As shown in Figure A P8.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point @ to point ® is 0.600 m, and point A is 0.200 m higher than point . A constant friction force (B Figure P8.20 of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point @, what is its speed at point ®? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point @, which bead reaches point 8 with a higher speed? Explain.arrow_forwardWhen a car is hit from behind, its passengers undergo sudden forward acceleration, which can cause a severe neck injury known as whiplash. During normal acceleration, the neck muscles play a large role in accelerating the head so that the bones are not injured. But during a very sudden acceleration, the muscles do not react immediately because they are flexible; most of the accelerating force is provided by the neck bones. Experiments have shown that these bones will fracture if they absorb more than 8.0 J of energy. (a) If a car waiting at a stoplight is rear-ended in a collision that lasts for 10.0 ms, what is the greatest speed this car and its driver can reach without breaking neck bones if the driver’s head has a mass of 5.0 kg (which is about right for a 70 kg person)? Express your answer in m/s and in mi/h. (b) What is the acceleration of the passengers during the collision in part (a), and how large a force is acting to accelerate their heads? Express the acceleration in m/s2…arrow_forward
- 5.0 kg particle can slide along a track with elevated ends and a flat central part, as shown in Figure. The flat part has length L = 12.0 m. The curved portions of the track are frictionless, but for the flat part the coefficient of kinetic friction is Hx = 0.20. The particle is released from rest at point A, which is a height h = 2 m above the flat part of the track. Where does the particle finally stop? X=?arrow_forwardIn the figure below, the two blocks are released from rest, with the 2.0 kg block at height H above the ground. The coefficient of kinetic friction between the 3.0 kg block and the table on which it is moving is 0.11. What height H must be for the 2.0 kg block to have a speed of magnitude 9.1 m/s just before it hits the ground? Consider g = 10.0 m/s2. 15 m 2.5 m 6.2 m 8.7 m 31 m 25 m 12 m 19 marrow_forwardA 2.0 kg piece of wood slides on a curved surface . The sides of the surface are perfectly smooth, but the rough horizontal bottom is 30 m long and has a kinetic friction coefficient of 0.20 with the wood. The piece of wood starts from rest 4.0 m above the rough bottom. (a) Where will this wood eventually come to rest? (b) For the motion from the initial release until the piece of wood comes to rest, what is the total amount of work done by friction?arrow_forward
- Starting from rest at the top, a child slides down the water slide at a swimming pool and enters the water at a final speed of 4.42 m/s. At what final speed would the child enter the water if the water slide were twice as high? Ignore friction and resistance from the air and the water lubricating the slide.arrow_forwardThe figure below shows a block of mass 0.5 kg moving on the inside surface of a vertical circular track of radius R = 1 m. The block has a speed vB = when it is at point B at the bottom of the circular track. The track is not smooth and a force of kinetic friction 12 m/s of magnitude 7.0 N acts on the block while it slides around the track. The frictional force on the block is always tangent to the track. Find the speed of the block when it is at point T at the top of the track. (Hint: the circumference of the circular track is 2nR.) T R® Barrow_forwardA 13.0kg stone slides down an icy, essentially frictionless, hill that is shown in the figure. At the top of the hill, the stone is moving at 1.75m/s down the hill. While the hill is frictionless, the stone experiences friction along the level, rough ground (beyond the base of the hill) all the way to a wall. The coefficients of static and kinetic friction are 0.800 and 0.300 respectively. The stone slides along the ground for 9.15m before making contact with a long spring, which has a spring constant of 25.0N/m. (“Long” in this case means that the spring is sufficiently long to stop the stone before it hits the wall.) Will the stone move again after it has been stopped by the spring?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY