Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 37AP
To determine
To determine: The angle at which the pumpkin will lose contact with the surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As a prank, someone has balanced a pumpkin at the highest point of a grain silo. The silo is topped with a hemispherical cap that is frictionless when wet. The line from the center of curvature of the cap to the pumpkin makes an angle θi = 0° with the vertical. While you happen to be standing nearby in the middle of a rainy night, a breath of wind makes the pumpkin start sliding downward from rest. It loses contact with the cap when the line from the center of the hemisphere to the pumpkin makes a certain angle with the vertical. What is this angle?
As a prank, someone has balanced a pumpkin at the highest point of a grain silo. The silo is topped
with a hemispherical cap that is frictionless when wet. The line from the center of curvature of the cap
to the pumpkin makes an angle 6, = 0 with the vertical. While you happen to be standing nearby in the
middle of a rainy night, a breath of wind makes the pumpkin start sliding downward from rest. It loses
contact with the cap when the line from the center of the hemisphere to the pumpkin makes a certain
angle with the vertical. What is this angle? (48.2 degrees)
You are working with a team that is designing a new roller coaster–type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 250-kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 110-m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 50.0 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force for the last 20 m for the empty test car. (b) Find the highest speed reached by the car during the final section of track length 250 m. (c) You are…
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - Prob. 6P
Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - Prob. 9PCh. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 13PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - You have spent a long day skiing and are tired....Ch. 8 - The electric motor of a model train accelerates...Ch. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Prob. 19PCh. 8 - There is a 5K event coming up in your town. While...Ch. 8 - Prob. 21PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A block of mass m = 200 g is released from rest at...Ch. 8 - Prob. 24APCh. 8 - Prob. 25APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - Why is the following situation impossible? A...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 33APCh. 8 - Prob. 34APCh. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - Prob. 36APCh. 8 - Prob. 37APCh. 8 - Review. Why is the following situation impossible?...Ch. 8 - Prob. 39APCh. 8 - A pendulum, comprising a light string of length L...Ch. 8 - Prob. 41APCh. 8 - Prob. 42APCh. 8 - Prob. 43APCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 45CPCh. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 47CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A suspicious physics student watches a stunt performed at an ice show. In the stunt, a performer shoots an arrow into a bale of hay (Fig. P11.24). Another performer rides on the bale of hay like a cowboy. After the arrow enters the bale, the balearrow system slides roughly 5 m along the ice. Estimate the initial speed of the arrow. Is there a trick to this stunt? FIGURE P11.24arrow_forwardReview. The mass of a car is 1 500 kg. The shape of the cars body is such that its aerodynamic drag coefficient is D = 0.330 and its frontal area is 2.50 m2. Assuming the drag force is proportional to 2 and ignoring other sources of friction, calculate the power required to maintain a speed of 100 km/h as the car climbs a long hill sloping at 3.20.arrow_forwardAn airplane of mass 3.60 × 105 kg experienced a problem with all its tires when it was about to touch down at a runway of an airport. The tires were deadlocked and not able to roll. The airplane began to skid once it touched down and left behind a 728 m long skid mark on the runway before it came to a stop. Even though everyone on the airplane was safe, the pilot was accused of failing to land the airplane within the allowable speed limit of 80.0 m/s and his pilot license was suspended. Given that the coefficient of kinetic friction between the tires and runway was 0.496. (i) Determine the work done by friction on the tires.(ii) Use the Work-Energy Theorem to evaluate if the suspension of the pilot’s license should be revoked. #This is an exercise question, please help. Thank You.arrow_forward
- A 480 g peregrine falcon reaches a speed of 75 m/s in a vertical dive called a stoop. If we assume that the falcon speeds up under the influence of gravity only, what is the minimum height of the dive needed to achieve this speed?arrow_forwardThe class I'm taking is physics for scientists and engineers! I am completely stuck. Need help. I have attached the problem. Please view attachment before answering. If you can please explain your answer so I can fully understand. Thank you!arrow_forwardA 4.0 kg block starts with a speed of 15 m/s at the bottom of a plane inclined at 33° to the horizontal. The coefficient of sliding friction between the block and plane is ?k = 0.22.arrow_forward
- 20. As shown in Figure A P8.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point @ to point ® is 0.600 m, and point A is 0.200 m higher than point . A constant friction force (B Figure P8.20 of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point @, what is its speed at point ®? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point @, which bead reaches point 8 with a higher speed? Explain.arrow_forwardA rectangular block of metal situated on a wide flat surface is given an initial speed of 4.5 m/s. Suppose that the coefficient of kinetic friction between the metal and the flat surface is 0.025, how long will be the distance covered before it stops? Ignore air resistance.arrow_forwardPregnancy dramatically affects the energetics of swimming for female dolphins. Dolphins have an approximately circular cross section and are very streamlined. A typical dolphin has a girth—the circumference at the widest part of the body—of 1.4 m and a drag coefficient of 0.090. Advanced pregnancy increases the girth to 1.7 m and, with a less streamlined shape, the drag coefficient to 0.22. Dolphins typically cruise at a speed of 3.4 m/s a.What will be the cruising speed of a pregnant dolphin if she swims with the same power output as before becoming pregnant?arrow_forward
- We are now going to consider the transport of the grains of pollen in the air. A grain of pollen torn from the stamen by a gust of wind finds itself airborne. It is now in free fall because it only experiences the force due to its weight and a friction force proportional to its speed. Question : Explain why the grain of pollen will reach a limiting speed in its free fall.arrow_forwardQuestion in pic.arrow_forwardA skier starts from rest at the top of a hill. The skier coasts down the hill and up a second hill, as the drawing illustrates. The crest of the second hill is circular, with a radius of 25.2 m. Neglect friction and air resistance. What must be the height h of the first hill so that the skier just loses contact with the snow at the crest of the second hill?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY