In a needle biopsy, a narrow strip of tissue is extracted from a patient with a hollow needle. Rather than being pushed by hand, to ensure a clean cut the needle can be fired into the patient’s body by a spring. Assume the needle has mass 5.60 g, the light spring has force constant 375 N/m, and the spring is originally compressed 8.10 cm to project the needle horizontally without friction. The tip of the needle then moves through 2.40 cm of skin and soft tissue, which exerts a resistive force of 7.60 N on it. Next, the needle cuts 3.50 cm into an organ, which exerts a backward force of 9.20 N on it. Find (a) the maximum speed of the needle and (b) the speed at which a flange on the back end of the needle runs into a stop, set to limit the penetration to 5.90 cm.
In a needle biopsy, a narrow strip of tissue is extracted from a patient with a hollow needle. Rather than being pushed by hand, to ensure a clean cut the needle can be fired into the patient’s body by a spring. Assume the needle has mass 5.60 g, the light spring has force constant 375 N/m, and the spring is originally compressed 8.10 cm to project the needle horizontally without friction. The tip of the needle then moves through 2.40 cm of skin and soft tissue, which exerts a resistive force of 7.60 N on it. Next, the needle cuts 3.50 cm into an organ, which exerts a backward force of 9.20 N on it. Find (a) the maximum speed of the needle and (b) the speed at which a flange on the back end of the needle runs into a stop, set to limit the penetration to 5.90 cm.
In a needle biopsy, a narrow strip of tissue is extracted from a patient with a hollow needle. Rather than being pushed by hand, to ensure a clean cut the needle can be fired into the patient’s body by a spring. Assume the needle has mass 5.60 g, the light spring has force constant 375 N/m, and the spring is originally compressed 8.10 cm to project the needle horizontally without friction. The tip of the needle then moves through 2.40 cm of skin and soft tissue, which exerts a resistive force of 7.60 N on it. Next, the needle cuts 3.50 cm into an organ, which exerts a backward force of 9.20 N on it. Find (a) the maximum speed of the needle and (b) the speed at which a flange on the back end of the needle runs into a stop, set to limit the penetration to 5.90 cm.
A spring is mounted horizontally, with its left end held stationary. By attaching a spring balance to the free end and pulling toward the right, the stretching force is proportional to the displacement and that a force of 6.0 N causes a displacement of 0.030 m. We remove the spring balance and attach a 0.50-kg glider to the end, pull it a distance of 0.020 m along a frictionless air track, release it and watch it oscillate.
Find the force constant of the spring.
Find the angular frequency, frequency and period of oscillation.
A bar weighing 26.0 N is supported horizontally on each end by two hangingsprings, each 15.0 cm long, with spring constants 0.970 N/cm and 1.45 N/cm,respectively. The bar is 6.00 m long and has a center of mass 2.00 m from thespring with constant 0.970 N/cm. How far does each spring stretch?
A pendulum consists of a 2.0 m long steel wire supporting a lentil of mass 20 kg. If the pendulum is released from a position where it makes an angle of 60 with the vertical, find the difference in length of the wire when the bob is in the initial position and when it passes through its lowest position.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY