A 5.0-kg block is pushed 3.0 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of θ = 30° with the horizontal, as shown in Figure P5.80. If the coefficient of kinetic friction between block and wall is 0.30, determine the work done by (a) , (b) the force of gravity, and (c) the normal force between block and wall. (d) By how much does the gravitational potential energy increase during the block’s motion?FIGURE P5.80

icon
Related questions
Question

A 5.0-kg block is pushed 3.0 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of θ = 30° with the horizontal, as shown in Figure P5.80. If the coefficient of kinetic friction between block and wall is 0.30, determine the work done by (a)  width=, (b) the force of gravity, and (c) the normal force between block and wall. (d) By how much does the gravitational potential energy increase during the block’s motion?

FIGURE P5.80

 width=

Expert Solution
Step 1

Given that,Mass of block (M) = 5 kgBlock is pushed vertically up with distance = 3 mConstant force is applied at angle (θ) =  30°Coefficient of kinetic friction (μ) = 0.30Here,a: For force F:From the FBD fig.1, we can say that different forces can act on the block diagram:Hence,We can apply equilibrium condition on the forces applied horizontally:Since from fig.1:                                  Fcosθ -n = 0Hence,                               n =   Fcosθ                   ..............eqn 1As we know that frictional force can be defined as:                            f = μn                              .........eqn 2Where,f = Frictional forceμ = Coefficient of frictionalF = Force applied on the blockn = Normal forceθ = Angle made by force applied horizontallyNow,From eqn 1 and eqn 2:                                                   f= μFcosθ           ......eqn 3Now from the fig.1,We can apply equilibrium condition on the forces applied vertically:                                            Fsinθ- mg-f = 0                    ........eqn 4Here putting the value of f in eqn 4:                                             Fsinθ- mg-μ Fcosθ   = 0     On solving above eqn:                                               F=mg(sinθ-μ Fcosθ)            .........eqn 5As we know that,m = 5kgg = 9.8 m/sec2θ = 30°μ = 0.30Putting all the given values in eqn 5:                                                                         F=(5 kg)(9.8 m/sec2)(sin30°-(0.30) Fcos30°)                                                                            F = 2×102  N                                   .......eqn 6                       Advanced Physics homework question answer, step 1, image 1

Step 2

As we know that,Workdone by a constant force:                                                           W = Fd cosϕ                   ........ eqn 7 Where,W = Workdone by a constant forceF = Magnitude of force constantd = Magnitude of displacementϕ = Angle between force and displacement vectorSince, ϕ= 60° F = 2×102  N d = 3 mNow putting all values in eqn 7 :                                                W =2×102 N(3 m) cos60°                                                     W  = 3×102 J                               .......eqn 8As we know that force an displacement can never be negative and hence workdone depends on the cosθ whether it is +ve or -ve.Answer: Hence, from eqn 8, Workdone by applied force(F): W  = 3×102 J       

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Similar questions