College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 12CQ
In most situations we have encountered in this chapter, frictional forces tend to reduce the kinetic energy of an object. However, frictional forces can sometimes increase an object’s kinetic energy. Describe a few situations in which friction causes an increase in kinetic energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
College Physics
Ch. 5.1 - In Figure 5.5 (a)-(d), a block moves to the right...Ch. 5.3 - Three identical halls are thrown from the top of a...Ch. 5.3 - Bob, of mass m, drops from a tree limb at the same...Ch. 5.5 - Prob. 5.4QQCh. 5 - Physics Review A crane lifts a loud of bricks of...Ch. 5 - Physics Review A crate of mass 20.0 kg rest on a...Ch. 5 - Calculate the work done by an applied force of...Ch. 5 - Prob. 4WUECh. 5 - Prob. 5WUECh. 5 - A 4.00-kg crate Marling at rest slides dawn a...
Ch. 5 - A skier leaves a ski jump at 15.0 m/s at some...Ch. 5 - A block of mass 3.00 kg is placed against a...Ch. 5 - What average mechanical power must a 70.0-kg...Ch. 5 - A puck of mass 0.170 kg slides across ice in the...Ch. 5 - Consider a tug-of-war as in Figure CQ5.1, in which...Ch. 5 - During a stress test of the cardiovascular system,...Ch. 5 - (a) If the height of a playground slide is kept...Ch. 5 - (a) Can the kinetic energy of a system be...Ch. 5 - Roads going up mountains are formed into...Ch. 5 - A bowling ball is suspended from the ceiling of a...Ch. 5 - As a simple pendulum swings back and forth, the...Ch. 5 - Discuss whether any work is being done by each of...Ch. 5 - When a punter kicks a football, is he doing any...Ch. 5 - The driver of a car slams on her brakes to avoid...Ch. 5 - A weight is connected to a spring that is...Ch. 5 - In most situations we have encountered in this...Ch. 5 - Suppose you are reshelving books in a library. As...Ch. 5 - The feet of a standing person of mass m exert a...Ch. 5 - An Earth satellite is in a circular orbit at an...Ch. 5 - Mark and David are loading identical cement blocks...Ch. 5 - If the speed of a particle is doubled, what...Ch. 5 - A certain truck has twice the mass of a car. Both...Ch. 5 - If the net work done on a particle is zero, which...Ch. 5 - A car accelerates uniformly from rest. Ignoring...Ch. 5 - A weight lifter lifts a 350-N set of weights from...Ch. 5 - In 1990 Walter Arfeuille of Belgium lifted a...Ch. 5 - Prob. 3PCh. 5 - a shopper in a supermarket pushes a cart with a...Ch. 5 - Starting from rest, a 5.00-kg block slides 2.50 m...Ch. 5 - A horizontal force of 150 N is used to push a...Ch. 5 - A sledge loaded with bricks has a total mass of...Ch. 5 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 5 - A mechanic pushes a 2.50 103-kg car from rest to...Ch. 5 - A 7.00-kg bowling ball moves at 3.00 m/s. How fast...Ch. 5 - A 65.0-kg runner has a speed of 5.20 m/s at one...Ch. 5 - A worker pushing a 35.0-kg wooden crate at a...Ch. 5 - A 70-kg base runner begins his slide into second...Ch. 5 - A running 62-kg cheetah has a top speed of 32 m/s....Ch. 5 - A 7.80-g bullet moving at 575 m/s penetrates a...Ch. 5 - A 0.60-kg particle has a speed of 2.0 m/s at point...Ch. 5 - A large cruise ship of mass 6.50 107 kg has a...Ch. 5 - A man pushing a crate of mass m = 92.0 kg at a...Ch. 5 - A 0.20-kg stone is held 1.3 m above the top edge...Ch. 5 - When a 2.50-kg object is hung vertically on a...Ch. 5 - In a control system, an accelerometer consists of...Ch. 5 - A 60.0-kg athlete leaps straight up into the air...Ch. 5 - A 2.10 103-kg pile driver is used to drive a...Ch. 5 - Two blocks are connected by a light string that...Ch. 5 - A daredevil on a motorcycle leaves the end of a...Ch. 5 - Truck suspensions often have helper springs dial...Ch. 5 - The chin-up is one exercise that can be used to...Ch. 5 - A flea is able to jump about 0.5 m. It has been...Ch. 5 - A 50.0-kg projectile is fired at an angle of 30.0...Ch. 5 - A projectile of mass m is fired horizontally with...Ch. 5 - A horizontal spring attached to a wall has a force...Ch. 5 - A 50.-kg pole vaulter running at 10. m/s vaults...Ch. 5 - A child and a sled with a combined mass of 50.0 kg...Ch. 5 - Hookes law describes a certain light spring of...Ch. 5 - A 0.250-kg block along a horizontal track has a...Ch. 5 - A block of mass m = 5.00 kg is released from rest...Ch. 5 - Tarzan savings on a 30.0-m-long vine initially...Ch. 5 - Two blocks are connected by a light string that...Ch. 5 - The launching mechanism of a toy gun consists of a...Ch. 5 - (a) A block with a mass m is pulled along a...Ch. 5 - (a) A child slides down a water slide at an...Ch. 5 - An airplane of mass 1.50 104 kg is moving at 60.0...Ch. 5 - The system shown in Figure P5.43 is used to lift...Ch. 5 - A 25.0-kg child on a 2.00-m-long swing is released...Ch. 5 - A 2.1 103-kg car starts from rest at the top of a...Ch. 5 - A child of mass m starts from rest and slides...Ch. 5 - A skier starts from rest at the top of a hill that...Ch. 5 - In a circus performance, a monkey is strapped to a...Ch. 5 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 5 - Q A skier of mass 70.0 kg is pulled up a slope by...Ch. 5 - A 3.50-kN piano is lilted by three workers at...Ch. 5 - While running, a person dissipates about 0.60 J of...Ch. 5 - The electric motor of a model train accelerates...Ch. 5 - When an automobile moves with constant speed down...Ch. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - A 1.50 103-kg car starts from rest and...Ch. 5 - A 6.50 102-kg elevator starts from rest and moves...Ch. 5 - The force acting on a particle varies as in Figure...Ch. 5 - An object of mass 3.00 kg is subject to a force Fx...Ch. 5 - The force acting on an object is given by Fx = (8x...Ch. 5 - An outfielder throws a 0.150-kg baseball at a...Ch. 5 - A person doing a chin-up weighs 700 N, exclusive...Ch. 5 - A boy starts at rest and slides down a...Ch. 5 - A roller-coaster car of mass 1.50 103 kg is...Ch. 5 - A ball of mass m = 1.80 kg is released from rest...Ch. 5 - An archer pulls her bowstring back 0.400 m by...Ch. 5 - A block of mass 12.0 kg slides from rest down a...Ch. 5 - (a) A 75-kg man steps out a window and falls (from...Ch. 5 - A toy gun uses a spring to project a 5.3-g soft...Ch. 5 - Two objects (m1 = 5.00 kg and m2 = 3.00 kg) are...Ch. 5 - In a needle biopsy, a narrow strip of tissue is...Ch. 5 - A 2.00 102-g particle is released from rest at...Ch. 5 - The particle described in Problem 71 (Fig. P5.71)...Ch. 5 - A light spring with spring constant 1.20 103 N/m...Ch. 5 - Prob. 76APCh. 5 - In terms of saving energy, bicycling and walking...Ch. 5 - Energy is conventionally measured in Calories as...Ch. 5 - A ski jumper starts from rest 50.0 m above the...Ch. 5 - A 5.0-kg block is pushed 3.0 m up a vertical wall...Ch. 5 - A childs pogo slick (Fig. P5.77) stores energy in...Ch. 5 - A hummingbird is able to hover because, as the...Ch. 5 - In the dangerous sport of bungee jumping, a daring...Ch. 5 - The masses of the javelin, discus, and shot are...Ch. 5 - A truck travels uphill with constant velocity on a...Ch. 5 - A daredevil wishes to bungee-jump from a hot-air...Ch. 5 - Prob. 87APCh. 5 - An object of mass m is suspended from the top of a...Ch. 5 - Three objects with masses m1 = 5.00 kg, m2 = 10.0...Ch. 5 - Prob. 90APCh. 5 - Prob. 91APCh. 5 - Two blocks, A and B (with mass 50.0 kg and 1.00 ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A nonconstant force is exerted on a particle as it moves in the positive direction along the x axis. Figure P9.26 shows a graph of this force Fx versus the particles position x. Find the work done by this force on the particle as the particle moves as follows. a. From xi = 0 to xf = 10.0 m b. From xi = 10.0 to xf = 20.0 m c. From xi = 0 to xf = 20.0 m FIGURE P9.26 Problems 26 and 27.arrow_forwardA jack-in-the-box is actually a system that consists of an object attached to the top of a vertical spring (Fig. P8.50). a. Sketch the energy graph for the potential energy and the total energy of the springobject system as a function of compression distance x from x = xmax to x = 0, where xmax is the maximum amount of compression of the spring. Ignore the change in gravitational potential energy. b. Sketch the kinetic energy of the system between these points the two distances in part (a)on the same graph (using a different color). FIGURE P8.50 Problems 50 and 79arrow_forwardA particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forward
- A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forwardAnswer yes or no to each of the following questions. (a) Can an objectEarth system have kinetic energy and not gravitational potential energy? (b) Can it have gravitational potential energy and not kinetic energy? (c) Can it have both types of energy at the same moment? (d) Can it have neither?arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forward
- As shown in Figure P7.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point to point is 0.600 m, and point is 0.200 in higher than point . A constant friction force of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point , what is its speed at point ? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point , which bead reaches point first? Explain. Figure P7.20arrow_forwardA particle is subject to a force Fx that varies with position as shown in Figure P7.9. Find the work done by the force on the particle as it moves (a) from x = 0 to x = 5.00 m, (b) from x = 5.00 m to x = 10.0 m, and (c) from x = 10.0 m to x = 15.0 m. (d) What is the total work done by the force over the distance x = 0 to x = 15.0 m?arrow_forwardFigure P9.65A shows a crate attached to a rope that is extended over an ideal pulley. Boris pulls on the other end of the rope with a constant force until the crate has risen a total distance of 6.53 m (Fig. P9.65B). If the crate has a mass of 81.36 kg, what is the average power exerted by Boris, assuming he accomplishes the task in 5.33 s? FIGURE P9.65arrow_forward
- Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forwardA boy starts at rest and slides down a frictionless slide as in Figure P5.64. The bottom of the track is a height h above the ground. The boy then leaves the track horizontally, striking the ground a distance d as shown. Using energy methods, determine the initial height H of the boy in terms of h and d. Figure P5.64arrow_forwardSuppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY