Single Variable Calculus: Concepts and Contexts, Enhanced Edition
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
4th Edition
ISBN: 9781337687805
Author: James Stewart
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7.6, Problem 10E

(a)

To determine

The equilibrium solutions based on the significance.

(a)

Expert Solution
Check Mark

Answer to Problem 10E

The 5000 aphids are enough to support a constant ladybugs population of 200.

Explanation of Solution

Given information:

Populations of aphids and ladybugs are modelled by the equations,

  dAdt=2A0.01ALdLdt=0.5L+0.0001AL

Formula used:

Solving of the equation.

Calculation:

To find the equilibrium (constant) solution is of the system, solve the following equations.

  2A0.01AL=00.5L+0.0001AL=0

Or

  A(20.01L)=0L(0.5+0.0001A)=0

One solution of this system is given as,

  A=0,L=0

This means that there are no aphids or ladybugs, the populations are certainly not going to increase.

The other equilibrium solution can be obtained by solve the following equations.

  20.01L=00.5+0.0001A=0

Or

  L=20.01L=200

And

  0.0001A=0.5A=0.50.0001A=5000

This means that, 5000 aphids are enough to support a constant ladybugs population of 200.

Conclusion:

The 5000 aphids are enough to support a constant ladybugs population of 200.

(b)

To determine

To find: The value of dLdA

(b)

Expert Solution
Check Mark

Answer to Problem 10E

The value is dLdA=0.5L+0.0001AL2A0.01AL

Explanation of Solution

Given information:

Populations of aphids and ladybugs are modelled by the equations,

  dAdt=2A0.01ALdLdt=0.5L+0.0001AL

Formula used:

  dLdA=dLdtdAdt

Calculation:

To find an expression for dLdA , write this term as follows:

  dLdA=dLdtdAdtdLdA=0.5L+0.0001AL2A0.01AL

Conclusion:

The value is dLdA=0.5L+0.0001AL2A0.01AL

(c)

To determine

To explain:when there is a common phase trajectories.

(c)

Expert Solution
Check Mark

Answer to Problem 10E

The phase trajectories have the point (5000, 200) in common

Explanation of Solution

Given information:

Populations of aphids and ladybugs are modelled by the equations,

  dAdt=2A0.01ALdLdt=0.5L+0.0001AL

Formula used:

  dfielplot(diff(y(x),x)(0.5y(x)+0.0001xy(x)2x0.01xy(x)),y(x),x=0...15000,y(x)=..400,color=blue);

Calculation:

To sketch the direction field for this differential equation, use Maple as follows.

Consider the dependent variable L as y and the independent variable A as x in this equation to use maple.

First install the packages,

  with(plots);with(DEtools)

Then use the following command to sketch the direction field.

  dfielplot(diff(y(x),x)(0.5y(x)+0.0001xy(x)2x0.01xy(x)),y(x),x=0...15000,y(x)=..400,color=blue);

  Single Variable Calculus: Concepts and Contexts, Enhanced Edition, Chapter 7.6, Problem 10E , additional homework tip  1

To sketch the phase portrait, use the following commands.

  >ODEI=(diff(y(x),x=0.5y(x)+0.0001xy(x)2x0.01xy(x)y(x),x=0..15000,y=0..400))

  ODEI=ddxy(x)=0.5y(x)+0.0001xy(x)2x0.01xy(x),y(x),x=0...15000,y=0..400

  Single Variable Calculus: Concepts and Contexts, Enhanced Edition, Chapter 7.6, Problem 10E , additional homework tip  2

From the figure, we observe that, the phase trajectories have the point (5000, 200) in common.

Conclusion:

The phase trajectories have the point (5000, 200) in common

(d)

To determine

The phase trajectory of the aphids and ladybugs.

(d)

Expert Solution
Check Mark

Answer to Problem 10E

It is not possible to describe the populations of aphids and ladybugs.

Explanation of Solution

Given information:

Populations of aphids and ladybugs are modelled by the equations,

  dAdt=2A0.01ALdLdt=0.5L+0.0001AL

Formula used:

  DEplot(diff(y(x),x)=0.5y(x)+0.0001xy(x)2x0.01xy(x),y(x),0..15000,[[y(1000)=200][y(1000)=400]].color=blue,arrows=LINE);

Calculation:

Use the following command, to sketch the solution curve through the point (1000, 200)

  DEplot(diff(y(x),x)=0.5y(x)+0.0001xy(x)2x0.01xy(x),y(x),0..15000,[[y(1000)=200][y(1000)=400]].color=blue,arrows=LINE);

  Single Variable Calculus: Concepts and Contexts, Enhanced Edition, Chapter 7.6, Problem 10E , additional homework tip  3

From the figure observe that, there is no solution curve exist passing through the point (1000, 200).

Hence, not possible to describe the populations of aphids and ladybugs.

Conclusion:

It is not possible to describe the populations of aphids and ladybugs.

(e)

To determine

The rough sketches of aphids and ladybugs.

(e)

Expert Solution
Check Mark

Answer to Problem 10E

The rough sketches of both the populations separately cannot be drawn.

Explanation of Solution

Given information:

Populations of aphids and ladybugs are modelled by the equations,

  dAdt=2A0.01ALdLdt=0.5L+0.0001AL

Formula used:

Solving of the equation.

Calculation:

From the observation of the part ((1), we cannot make rough sketches of both the populations separately.

Conclusion:

The rough sketches of both the populations separately cannot be drawn.

Chapter 7 Solutions

Single Variable Calculus: Concepts and Contexts, Enhanced Edition

Ch. 7.1 - Prob. 11ECh. 7.1 - Prob. 12ECh. 7.1 - Prob. 13ECh. 7.1 - Prob. 14ECh. 7.1 - Prob. 15ECh. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - Prob. 4ECh. 7.2 - Prob. 5ECh. 7.2 - Prob. 6ECh. 7.2 - Prob. 7ECh. 7.2 - Prob. 8ECh. 7.2 - Prob. 9ECh. 7.2 - Prob. 10ECh. 7.2 - Prob. 11ECh. 7.2 - Prob. 12ECh. 7.2 - Prob. 13ECh. 7.2 - Prob. 14ECh. 7.2 - Prob. 15ECh. 7.2 - Prob. 16ECh. 7.2 - Prob. 17ECh. 7.2 - Prob. 18ECh. 7.2 - Prob. 19ECh. 7.2 - Prob. 20ECh. 7.2 - Prob. 21ECh. 7.2 - Prob. 22ECh. 7.2 - Prob. 23ECh. 7.2 - Prob. 24ECh. 7.2 - Prob. 25ECh. 7.2 - Prob. 26ECh. 7.2 - Prob. 27ECh. 7.2 - Prob. 28ECh. 7.3 - Prob. 1ECh. 7.3 - Prob. 2ECh. 7.3 - Prob. 3ECh. 7.3 - Prob. 4ECh. 7.3 - Prob. 5ECh. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - Prob. 8ECh. 7.3 - Prob. 9ECh. 7.3 - Prob. 10ECh. 7.3 - Prob. 11ECh. 7.3 - Prob. 12ECh. 7.3 - Prob. 13ECh. 7.3 - Prob. 14ECh. 7.3 - Prob. 15ECh. 7.3 - Prob. 16ECh. 7.3 - Prob. 17ECh. 7.3 - Prob. 18ECh. 7.3 - Prob. 19ECh. 7.3 - Prob. 20ECh. 7.3 - Prob. 21ECh. 7.3 - Prob. 22ECh. 7.3 - Prob. 23ECh. 7.3 - Prob. 24ECh. 7.3 - Prob. 25ECh. 7.3 - Prob. 26ECh. 7.3 - Prob. 27ECh. 7.3 - Prob. 28ECh. 7.3 - Prob. 29ECh. 7.3 - Prob. 30ECh. 7.3 - Prob. 31ECh. 7.3 - Prob. 32ECh. 7.3 - Prob. 33ECh. 7.3 - Prob. 34ECh. 7.3 - Prob. 35ECh. 7.3 - Prob. 36ECh. 7.3 - Prob. 37ECh. 7.3 - Prob. 38ECh. 7.3 - Prob. 39ECh. 7.3 - Prob. 40ECh. 7.3 - Prob. 41ECh. 7.3 - Prob. 42ECh. 7.3 - Prob. 43ECh. 7.3 - Prob. 44ECh. 7.3 - Prob. 45ECh. 7.3 - Prob. 46ECh. 7.3 - Prob. 47ECh. 7.3 - Prob. 48ECh. 7.3 - Prob. 49ECh. 7.3 - Prob. 50ECh. 7.3 - Prob. 51ECh. 7.3 - Prob. 52ECh. 7.3 - Prob. 53ECh. 7.3 - Prob. 54ECh. 7.4 - Prob. 1ECh. 7.4 - Prob. 2ECh. 7.4 - Prob. 3ECh. 7.4 - Prob. 4ECh. 7.4 - Prob. 5ECh. 7.4 - Prob. 6ECh. 7.4 - Prob. 7ECh. 7.4 - Prob. 8ECh. 7.4 - Prob. 9ECh. 7.4 - Prob. 10ECh. 7.4 - Prob. 11ECh. 7.4 - Prob. 12ECh. 7.4 - Prob. 13ECh. 7.4 - Prob. 14ECh. 7.4 - Prob. 15ECh. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - Prob. 20ECh. 7.4 - Prob. 21ECh. 7.4 - Prob. 22ECh. 7.5 - Prob. 1ECh. 7.5 - Prob. 2ECh. 7.5 - Prob. 3ECh. 7.5 - Prob. 4ECh. 7.5 - Prob. 5ECh. 7.5 - Prob. 6ECh. 7.5 - Prob. 7ECh. 7.5 - Prob. 8ECh. 7.5 - Prob. 9ECh. 7.5 - Prob. 10ECh. 7.5 - Prob. 11ECh. 7.5 - Prob. 12ECh. 7.5 - Prob. 13ECh. 7.5 - Prob. 14ECh. 7.5 - Prob. 15ECh. 7.5 - Prob. 16ECh. 7.5 - Prob. 17ECh. 7.5 - Prob. 18ECh. 7.5 - Prob. 19ECh. 7.5 - Prob. 20ECh. 7.6 - Prob. 1ECh. 7.6 - Prob. 2ECh. 7.6 - Prob. 3ECh. 7.6 - Prob. 4ECh. 7.6 - Prob. 5ECh. 7.6 - Prob. 6ECh. 7.6 - Prob. 7ECh. 7.6 - Prob. 8ECh. 7.6 - Prob. 9ECh. 7.6 - Prob. 10ECh. 7.6 - Prob. 11ECh. 7.6 - Prob. 12ECh. 7 - Prob. 1RCCCh. 7 - Prob. 2RCCCh. 7 - Prob. 3RCCCh. 7 - Prob. 4RCCCh. 7 - Prob. 5RCCCh. 7 - Prob. 6RCCCh. 7 - Prob. 7RCCCh. 7 - Prob. 8RCCCh. 7 - Prob. 1RQCh. 7 - Prob. 2RQCh. 7 - Prob. 3RQCh. 7 - Prob. 4RQCh. 7 - Prob. 5RQCh. 7 - Prob. 1RECh. 7 - Prob. 2RECh. 7 - Prob. 3RECh. 7 - Prob. 4RECh. 7 - Prob. 5RECh. 7 - Prob. 6RECh. 7 - Prob. 7RECh. 7 - Prob. 8RECh. 7 - Prob. 9RECh. 7 - Prob. 10RECh. 7 - Prob. 11RECh. 7 - Prob. 12RECh. 7 - Prob. 13RECh. 7 - Prob. 14RECh. 7 - Prob. 15RECh. 7 - Prob. 16RECh. 7 - Prob. 17RECh. 7 - Prob. 18RECh. 7 - Prob. 19RECh. 7 - Prob. 20RECh. 7 - Prob. 21RECh. 7 - Prob. 22RECh. 7 - Prob. 23RECh. 7 - Prob. 24RECh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14P
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY