Single Variable Calculus: Concepts and Contexts, Enhanced Edition
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
4th Edition
ISBN: 9781337687805
Author: James Stewart
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 8P
To determine

The rate of the removal.

Expert Solution & Answer
Check Mark

Answer to Problem 8P

The dog never catches the rabbit.

Explanation of Solution

Given information:

Snow began to fall during the morning of February 2 and continued steadily into the afternoon. At noon a snow plow began removing snow from a road at a constant rate. The plow traveled 6 km from noon to 1 PM out only 3 km from 1 PM to 2 PM. When did the snow begin to fall?

Formula used:

  s=L1+(dydx)2dx

Calculation:

The distance travelled by the dog from point (L, 0) to (0, s) is given by the following equation.

  s=L1+(dydx)2dx=L1+(dydx)2dxdsdx=1+(dydx)2

The speed of the dog is twice the speed of the rabbit it means position of the rabbit when dog has travelled the distance s is (0,s2)

Here the dog runs in a Straight line to catch the rabbit, so the rate of change of y with respect to x is the slope of the line joining the points (0,s2),(x,y)

  dydx=s2y0xxdydx=s2ys=2y2xdydxdsdx=2dydx2dydx2xd2ydx2dsdx=2d2ydx2

Equate the expressions for dsdx

  1+(dydx)2=2xd2ydx21+(dydx)2=2xd2ydx2

Hence the desired differential equation is 1+(dydx)2=2xd2ydx2

Solve the differential equation 1+(dydx)2=2xd2ydx2

Let dydx be z then d2ydx2 will be dzdx

Now put these values in the differential equation 1+(dydx)2=2xd2ydx2

  1+z2=2xdzdx

This equation can be solved by separating the variables and then by integrating it

  dz1+z2=dx2xdz1+z2=dx2x

  ln(z+1+z2)=12lnx+12lnCln(z+1+z2)2=lnxC(z+1+z2)2=xC

When x=L,z=0 this implies (0+1+02)=LCC=1L

Put C=1L into the equation (z+1+z2)2=xC

  (z+1+z2)2=xC(z+1+z2)2=xL

Now solve this equation for Z.

  (z+1+z2)2=xL1+2z(z+1+z2)=xL1+2z(xL)=xL

Since,

  z+1+z2=±xL

  z=xL12xLorz=1+xL2xL

Now solve these equations one by one separately.

  z=xL12xLdydx=xL12xLdy=xL12xLdx

Here y=0 when x=L

So,

  0=LL3LL.L+C1C1=2L3

Put this value into the equation y=xx3LLx+C1

  y=xx3LLx+2L3

Hence the solution to the differential equation z=xL12xL is y=xx3LLx+2L3

Solve the second equation z=1xL2xL

It can be rewritten as z=(xL12xL)

Hence solution to equation will be y=(xx3LLx+C2)

Here y=0 when x=L so 0=(LL3LL.L+C1)C2=2L3

Put this value into the equation y=(xx3LLx+C2)

  y=(xx3LLx+2L3)

Hence the solution to the differential equation z=1xL2xLisy=(xx3LLx+2L3)

Evaluate the limx0y tofind the distance at which the dog catches the rabbit.

Use either of the equations y=(xx3LLx+2L3) and y=xx3LLx+2L3 to evaluate limx0y

  limx0y=limx0(xx3LLx+2L3)=00+2L3limx0y=2L3

Hence dog catches the rabbit at distance of limx0y=2L3 units

The distance travelled by the dog from point (L, 0) to (0, 5) is given by the following equation.

  s=L1+(dydx)2dx=L1+(dydx)2dxdsdx=1+(dydx)2

The speed of the dog is half the speed of the rabbit it means position of the rabbit when dog has travelled the distance sis (0,2s).

Here the dog runs in a straight line to catch the rabbit, so the rate of change of y with respect to x is the slope of the line joining the points (0, 2s), (x, y).

  dydx=2sy0xxdydx=2sys=y2x2dydxdsdx=12dydx12dydx12xd2ydx2dsdx=12xd2ydx2

Equate the expressions for dsdx

  1+(dydx)2=12xd2ydx21+(dydx)2=x2d2ydx2

Hence the desired differential equation is 1+(dydx)2=x2d2ydx2

Solve the differential equation 1+(dydx)2=x2d2ydx2

Let dydx be z then d2ydx2 will be dzdx

Now put these values in the differential equation 1+(dydx)2=x2d2ydx2

  1+z2=x2dzdx

This equation can be solved by separating the variables and then by integrating it

  dz1+z2=2dxxdz1+z2=2dxxln(z+1+z2)=2lnx+2lnCln(z+1+z2)=lnxC(z+1+z2)=(xC)2

When x=L,z=0 this implies (0+1+02)=(CL)2C=1L

Put C=1L into the equation (z+1+z2)=(xC)2

  (z+1+z2)=(xC)2(z+1+z2)=(xL)2

Now solve this equation for Z.

  (z+1+z2)2=(xL)41+2z(z+1+z2)=(xL)41+2z(xL)2=(xL)4

Since,

  (z+1+2z)2=(xL)4z=(xL)412(xL)2

  dydx=(xL)412(xL)2dy=(xL)412(xL)2dxdy=12L2x2dxL22x2dx+C1y=12Lx33+L22x+C1y=x36L+L22x+C1

Here y=0 when x=L

So

  0=L36L+L22L+C1C1=L2L526

Hence the solution to the differential equation z=(xL)412(xL)2isy=x36L+L22xL2L526

Evaluate the limit limx0y to find the distance at which the dog catches the rabbit.

Use the equation y=x36L+L22xL2L526 to evaluate limx0y

  limx0y=limx0(x36L+L22xL2L526)limx0y=

Hence dog never catches the rabbit.

Conclusion:

The dog never catches the rabbit.

Chapter 7 Solutions

Single Variable Calculus: Concepts and Contexts, Enhanced Edition

Ch. 7.1 - Prob. 11ECh. 7.1 - Prob. 12ECh. 7.1 - Prob. 13ECh. 7.1 - Prob. 14ECh. 7.1 - Prob. 15ECh. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - Prob. 4ECh. 7.2 - Prob. 5ECh. 7.2 - Prob. 6ECh. 7.2 - Prob. 7ECh. 7.2 - Prob. 8ECh. 7.2 - Prob. 9ECh. 7.2 - Prob. 10ECh. 7.2 - Prob. 11ECh. 7.2 - Prob. 12ECh. 7.2 - Prob. 13ECh. 7.2 - Prob. 14ECh. 7.2 - Prob. 15ECh. 7.2 - Prob. 16ECh. 7.2 - Prob. 17ECh. 7.2 - Prob. 18ECh. 7.2 - Prob. 19ECh. 7.2 - Prob. 20ECh. 7.2 - Prob. 21ECh. 7.2 - Prob. 22ECh. 7.2 - Prob. 23ECh. 7.2 - Prob. 24ECh. 7.2 - Prob. 25ECh. 7.2 - Prob. 26ECh. 7.2 - Prob. 27ECh. 7.2 - Prob. 28ECh. 7.3 - Prob. 1ECh. 7.3 - Prob. 2ECh. 7.3 - Prob. 3ECh. 7.3 - Prob. 4ECh. 7.3 - Prob. 5ECh. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - Prob. 8ECh. 7.3 - Prob. 9ECh. 7.3 - Prob. 10ECh. 7.3 - Prob. 11ECh. 7.3 - Prob. 12ECh. 7.3 - Prob. 13ECh. 7.3 - Prob. 14ECh. 7.3 - Prob. 15ECh. 7.3 - Prob. 16ECh. 7.3 - Prob. 17ECh. 7.3 - Prob. 18ECh. 7.3 - Prob. 19ECh. 7.3 - Prob. 20ECh. 7.3 - Prob. 21ECh. 7.3 - Prob. 22ECh. 7.3 - Prob. 23ECh. 7.3 - Prob. 24ECh. 7.3 - Prob. 25ECh. 7.3 - Prob. 26ECh. 7.3 - Prob. 27ECh. 7.3 - Prob. 28ECh. 7.3 - Prob. 29ECh. 7.3 - Prob. 30ECh. 7.3 - Prob. 31ECh. 7.3 - Prob. 32ECh. 7.3 - Prob. 33ECh. 7.3 - Prob. 34ECh. 7.3 - Prob. 35ECh. 7.3 - Prob. 36ECh. 7.3 - Prob. 37ECh. 7.3 - Prob. 38ECh. 7.3 - Prob. 39ECh. 7.3 - Prob. 40ECh. 7.3 - Prob. 41ECh. 7.3 - Prob. 42ECh. 7.3 - Prob. 43ECh. 7.3 - Prob. 44ECh. 7.3 - Prob. 45ECh. 7.3 - Prob. 46ECh. 7.3 - Prob. 47ECh. 7.3 - Prob. 48ECh. 7.3 - Prob. 49ECh. 7.3 - Prob. 50ECh. 7.3 - Prob. 51ECh. 7.3 - Prob. 52ECh. 7.3 - Prob. 53ECh. 7.3 - Prob. 54ECh. 7.4 - Prob. 1ECh. 7.4 - Prob. 2ECh. 7.4 - Prob. 3ECh. 7.4 - Prob. 4ECh. 7.4 - Prob. 5ECh. 7.4 - Prob. 6ECh. 7.4 - Prob. 7ECh. 7.4 - Prob. 8ECh. 7.4 - Prob. 9ECh. 7.4 - Prob. 10ECh. 7.4 - Prob. 11ECh. 7.4 - Prob. 12ECh. 7.4 - Prob. 13ECh. 7.4 - Prob. 14ECh. 7.4 - Prob. 15ECh. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - Prob. 20ECh. 7.4 - Prob. 21ECh. 7.4 - Prob. 22ECh. 7.5 - Prob. 1ECh. 7.5 - Prob. 2ECh. 7.5 - Prob. 3ECh. 7.5 - Prob. 4ECh. 7.5 - Prob. 5ECh. 7.5 - Prob. 6ECh. 7.5 - Prob. 7ECh. 7.5 - Prob. 8ECh. 7.5 - Prob. 9ECh. 7.5 - Prob. 10ECh. 7.5 - Prob. 11ECh. 7.5 - Prob. 12ECh. 7.5 - Prob. 13ECh. 7.5 - Prob. 14ECh. 7.5 - Prob. 15ECh. 7.5 - Prob. 16ECh. 7.5 - Prob. 17ECh. 7.5 - Prob. 18ECh. 7.5 - Prob. 19ECh. 7.5 - Prob. 20ECh. 7.6 - Prob. 1ECh. 7.6 - Prob. 2ECh. 7.6 - Prob. 3ECh. 7.6 - Prob. 4ECh. 7.6 - Prob. 5ECh. 7.6 - Prob. 6ECh. 7.6 - Prob. 7ECh. 7.6 - Prob. 8ECh. 7.6 - Prob. 9ECh. 7.6 - Prob. 10ECh. 7.6 - Prob. 11ECh. 7.6 - Prob. 12ECh. 7 - Prob. 1RCCCh. 7 - Prob. 2RCCCh. 7 - Prob. 3RCCCh. 7 - Prob. 4RCCCh. 7 - Prob. 5RCCCh. 7 - Prob. 6RCCCh. 7 - Prob. 7RCCCh. 7 - Prob. 8RCCCh. 7 - Prob. 1RQCh. 7 - Prob. 2RQCh. 7 - Prob. 3RQCh. 7 - Prob. 4RQCh. 7 - Prob. 5RQCh. 7 - Prob. 1RECh. 7 - Prob. 2RECh. 7 - Prob. 3RECh. 7 - Prob. 4RECh. 7 - Prob. 5RECh. 7 - Prob. 6RECh. 7 - Prob. 7RECh. 7 - Prob. 8RECh. 7 - Prob. 9RECh. 7 - Prob. 10RECh. 7 - Prob. 11RECh. 7 - Prob. 12RECh. 7 - Prob. 13RECh. 7 - Prob. 14RECh. 7 - Prob. 15RECh. 7 - Prob. 16RECh. 7 - Prob. 17RECh. 7 - Prob. 18RECh. 7 - Prob. 19RECh. 7 - Prob. 20RECh. 7 - Prob. 21RECh. 7 - Prob. 22RECh. 7 - Prob. 23RECh. 7 - Prob. 24RECh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14P
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY