Given information :
The initial value problem is y'=y+xy,y(0)=1 .
Formula used :
Euler’s method: approximate values for the solution of the initial-value problem
y'=F(x,y),y(x0)=y0 with step size h , at xn=xn−1+h
yn=yn−1+hF(xn−1,yn−1)
Calculation : here since, h=0.1,x0=0,y0=1 and F(x,y)=y+xy .
So,
y1=y0+hF(x0,y0)y1=1+0.1F(0,1) [substitute ]y1=1+0.1(1+0·1) [F(x,y)=y+xy and substitute]y1=1.1 [simplify]
y2=y1+hF(x1,y1)y2=1.1+0.1F(0.1,1.1) [substitute x1=0+0.1]y2=1.1+0.1(1.1+1.1·0.1) [F(x,y)=y+xy and substitute]y2=1.221 [simplify]
y3=y2+hF(x2,y2)y3=1.221+0.1F(0.2,1.221) [substitute x2=0.1+0.1]y3=1.221+0.1(1.221+1.221·0.2) [F(x,y)=y+xy and substitute]y3=1.36 [simplify]
y4=y3+hF(x3,y3)y4=1.36+0.1F(0.3,1.36) [substitute x3=0.2+0.1]y4=1.36+0.1(1.36+1.36·0.3) [F(x,y)=y+xy and substitute]y4=1.53 [simplify]
y5=y4+hF(x4,y4)y5=1.53+0.1F(0.4,1.53) [substitute x4=0.3+0.1]y5=1.53+0.1(1.53+1.53·0.4) [F(x,y)=y+xy and substitute]y5=1.76 [simplify]
This means that if y(x) is exact solution, then y(0.5)=1.76 .
Thus the value is y(0.5)=1.76 .