Concept explainers
a)
The amount of ice added.
a)
Answer to Problem 207RP
The amount of ice added is
Explanation of Solution
Write the expression for the energy balance equation for closed system.
Here, energy transfer into the control volume is
Write the expression to calculate the initial entropy of the refrigerant.
Here, initial entropy is
Write the expression to calculate the initial enthalpy of the refrigerant.
Here, initial enthalpy is
Write the expression to calculate the initial specific volume of the mixture.
Here, initial specific volume of the mixture is
Write the expression to calculate the mass of the stream
Here, the initial volume of a container is
Conclusion:
Substitute
Here, change in enthalpy in ice is
From the Table A-4, “Saturated water-Temperature table” the obtain the following properties at temperature of is
From the Table A-4, “Saturated water-Temperature table” the obtain the following properties at temperature of is
Here, the final entropy is
Substitute
Substitute
Substitute
Substitute
From the Table A-3, “Properties of common liquids, solids, and foods”, select the specific heat at constant pressure at room temperature for liquid and ice as
The melting temperature and the heat of fusion of ice at
Substitute
Thus, the amount of ice added is
b)
The entropy generation during the process.
b)
Answer to Problem 207RP
The generation during the process is
Explanation of Solution
Write the expression for the entropy balance equation of the system.
Here, rate of net entropy in is
Conclusion:
Substitute 0 for
Substitute
Thus, the generation during the process is
Want to see more full solutions like this?
Chapter 7 Solutions
Thermodynamics: An Engineering Approach
- A well-insulated rigid tank contains 3.5 kg of a saturated liquid-vapor mixture of water at 200 kPa. Initially, three-quarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized. Determine the entropy change of the steam during this process. Use steam tables. H₂O 200 kPa We The entropy change of the steam during this process is kJ/K.arrow_forwardA 10-kg air is compressed isothermally from 1 atm and 30ºC. If 150 Btu of heat lost by the system, determine the final pressure.arrow_forwardA piston-cylinder device contains a saturated water. During a constant- pressure process, 538 kJ of heat is transferred to the surrounding air at 23°C. Determine the total entropy generation during this heat transfer process if the change of entropy is - 1.4 kJ/kg. K.arrow_forward
- A 50-kg copper block initially at 140°C is dropped into an insulated tank that contains 90 L of water at 10°C. Determine the final equilibrium temperature and the total entropy change for this processarrow_forwardA 5-lb of copper at 200°F is submerged in 10 lbm of water at 50°F, and after a period of time, equilibrium is established. If the container is insulated, calculate the entropy change.A. 0B. 0.0167 Btu/RC. 0.0255 Btu/RD. 0.0315 Btu/Rarrow_forward1kg of liquid subcooled water at 90°C is left to cool down at a LARGE room at 25°C until thermodynamic equilibrium is reached. Calculate the entropy generation during the process. (Include the units) Answer:arrow_forward
- Help with this problemarrow_forwardA piston–cylinder device contains a liquid–vapor mixture of water at 300 K. During a constant-pressure process, 750 kJ of heat is transferred to the water. As a result, part of the liquid in the cylinder vaporizes. Determine the entropy change of the water during this process.arrow_forwardThe inner and outer surfaces of a 4-m × 10-m brick wall of thickness 20 cm are maintained at temperatures of 16°C and 4°C, respectively. If the rate of heat transfer through the wall is 1800 W, determine the rate of entropy generation within the wall.arrow_forward
- Steam at 110.356 kPa and 140.356oC is compressed isothermally until the quality of steam is 70%. determine the change in volume, change of specific internal energy, the change of specific entropy, and heat.arrow_forwardA well-insulated rigid tank contains 3 kg of a saturated liquid–vapor mixture of water at 200 kPa. Initially, threequarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized. Determine the entropy change of the steam during this processarrow_forwardAn insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains 14.5 kmol of an ideal gas at 330 kPa and 50°C, and the other side is evacuated. The partition is now removed, and the gas fills the entire tank. Determine the total entropy change during this process. The value of the universal gas constant Ru is 8.314 kJ/kmol-K. The total entropy change during this process is kJ/K.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY