Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.13, Problem 220RP
To determine
The compressor and turbine isentropic efficiencies as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Brayton cycle (1–2–3–4–1) can be modeled as a closed cycle with air (ideal gas with known constant properties) with a mass flow rate of m˙ B = 60 kg/s. The minimum and maximum pressures of the Brayton cycle are known and equal p B min = 0.3 MPa and p B max = 1.6 MPa, as well as the absorbed power Q˙H = 50 MW and the minimum temperature (T1 = 25ºC) of the cycle. Knowing that all processes occur in devices that operate in steady state, calculate the following parameters for each cycle: ( A ). The temperature at all points; ( B ). The compression and expansion power of each Brayton-Rankine cycle, as well as the absorbed/rejected heat transfer rate. ( C ). The efficiencies of each cycle, as well as the overall efficiency of the combined cycle (The combined cycle efficiency is calculated from the sum of the net work of the cycles under the heat supplied to the combined cycle). ( D ). The entropies generated from each process, as well as the total entropy for each cycle. General data: R…
C. In an ideal gas turbine power device, the pressure ratio is 6, the temperature entering the compressor is 27°C, and the maximum allowable temperature of the turbine is 816°C. What is the efficiency of this power device when it is carried out in reversible operation? However, the specific ratio is 1.4.
(a)20% (b)30% (c)40% (d)50%
The following two claims are made by salesmen about newly invented 2-phase adiabatic
compressors.
Salesman A: "It can compress steam with a quality of 0.1 from 100 kPa to saturated liquid at 400 kPa."
Salesman B: "It can compress steam with a quality of 0.1 from 100 kPa to saturated liquid at 1000 kPa."
a. Show both claims on a T-S (temperature vs. specific entropy) diagram.
b. Which claim or claims are possible?
c. Which claim or claims are impossible?
Chapter 7 Solutions
Thermodynamics: An Engineering Approach
Ch. 7.13 - Prob. 1PCh. 7.13 - Does the cyclic integral of heat have to be zero...Ch. 7.13 - Is a quantity whose cyclic integral is zero...Ch. 7.13 - Prob. 4PCh. 7.13 - Prob. 5PCh. 7.13 - How do the values of the integral 12Q/T compare...Ch. 7.13 - The entropy of a hot baked potato decreases as it...Ch. 7.13 - When a system is adiabatic, what can be said about...Ch. 7.13 - Prob. 9PCh. 7.13 - A pistoncylinder device contains helium gas....
Ch. 7.13 - A pistoncylinder device contains nitrogen gas....Ch. 7.13 - A pistoncylinder device contains superheated...Ch. 7.13 - The entropy of steam will (increase, decrease,...Ch. 7.13 - Prob. 14PCh. 7.13 - Prob. 15PCh. 7.13 - Prob. 16PCh. 7.13 - Steam is accelerated as it flows through an actual...Ch. 7.13 - Prob. 18PCh. 7.13 - Prob. 19PCh. 7.13 - Prob. 20PCh. 7.13 - Heat in the amount of 100 kJ is transferred...Ch. 7.13 - In Prob. 719, assume that the heat is transferred...Ch. 7.13 - 7–23 A completely reversible heat pump produces...Ch. 7.13 - During the isothermal heat addition process of a...Ch. 7.13 - Prob. 25PCh. 7.13 - During the isothermal heat rejection process of a...Ch. 7.13 - Prob. 27PCh. 7.13 - Prob. 28PCh. 7.13 - Two lbm of water at 300 psia fill a weighted...Ch. 7.13 - A well-insulated rigid tank contains 3 kg of a...Ch. 7.13 - The radiator of a steam heating system has a...Ch. 7.13 - A rigid tank is divided into two equal parts by a...Ch. 7.13 - 7–33 An insulated piston–cylinder device contains...Ch. 7.13 - Prob. 34PCh. 7.13 - Prob. 35PCh. 7.13 - Onekg of R-134a initially at 600 kPa and 25C...Ch. 7.13 - Refrigerant-134a is expanded isentropically from...Ch. 7.13 - Prob. 38PCh. 7.13 - Refrigerant-134a at 320 kPa and 40C undergoes an...Ch. 7.13 - A rigid tank contains 5 kg of saturated vapor...Ch. 7.13 - A 0.5-m3 rigid tank contains refrigerant-134a...Ch. 7.13 - Prob. 44PCh. 7.13 - Prob. 45PCh. 7.13 - Steam enters an adiabatic diffuser at 150 kPa and...Ch. 7.13 - Prob. 47PCh. 7.13 - An isentropic steam turbine processes 2 kg/s of...Ch. 7.13 - Prob. 50PCh. 7.13 -
7–51 0.7-kg of R-134a is expanded isentropically...Ch. 7.13 - Twokg of saturated water vapor at 600 kPa are...Ch. 7.13 - Steam enters a steady-flow adiabatic nozzle with a...Ch. 7.13 - Prob. 54PCh. 7.13 - In Prob. 755, the water is stirred at the same...Ch. 7.13 - A pistoncylinder device contains 5 kg of steam at...Ch. 7.13 - Prob. 57PCh. 7.13 - Prob. 59PCh. 7.13 - A 50-kg copper block initially at 140C is dropped...Ch. 7.13 - Prob. 61PCh. 7.13 - Prob. 62PCh. 7.13 - A 30-kg aluminum block initially at 140C is...Ch. 7.13 - A 30-kg iron block and a 40-kg copper block, both...Ch. 7.13 - An adiabatic pump is to be used to compress...Ch. 7.13 - Prob. 67PCh. 7.13 - Can the entropy of an ideal gas change during an...Ch. 7.13 - An ideal gas undergoes a process between two...Ch. 7.13 - Prob. 72PCh. 7.13 - Prob. 73PCh. 7.13 - Prob. 74PCh. 7.13 - Prob. 75PCh. 7.13 - A 1.5-m3 insulated rigid tank contains 2.7 kg of...Ch. 7.13 - An insulated pistoncylinder device initially...Ch. 7.13 - A pistoncylinder device contains 0.75 kg of...Ch. 7.13 - Prob. 80PCh. 7.13 - 7–81 Air enters a nozzle steadily at 280 kPa and...Ch. 7.13 - A mass of 25 lbm of helium undergoes a process...Ch. 7.13 - One kg of air at 200 kPa and 127C is contained in...Ch. 7.13 - Prob. 85PCh. 7.13 - Air at 3.5 MPa and 500C is expanded in an...Ch. 7.13 -
7–87E Air is compressed in an isentropic...Ch. 7.13 - An insulated rigid tank is divided into two equal...Ch. 7.13 - An insulated rigid tank contains 4 kg of argon gas...Ch. 7.13 - Prob. 90PCh. 7.13 - Prob. 91PCh. 7.13 - Prob. 92PCh. 7.13 - Air at 27C and 100 kPa is contained in a...Ch. 7.13 - Prob. 94PCh. 7.13 - Helium gas is compressed from 90 kPa and 30C to...Ch. 7.13 - Five kg of air at 427C and 600 kPa are contained...Ch. 7.13 - Prob. 97PCh. 7.13 - The well-insulated container shown in Fig. P 795E...Ch. 7.13 - Prob. 99PCh. 7.13 - Prob. 100PCh. 7.13 - It is well known that the power consumed by a...Ch. 7.13 - Prob. 102PCh. 7.13 - Prob. 103PCh. 7.13 - Saturated water vapor at 150C is compressed in a...Ch. 7.13 - Liquid water at 120 kPa enters a 7-kW pump where...Ch. 7.13 - Prob. 106PCh. 7.13 - Consider a steam power plant that operates between...Ch. 7.13 - Helium gas is compressed from 16 psia and 85F to...Ch. 7.13 - Nitrogen gas is compressed from 80 kPa and 27C to...Ch. 7.13 - Saturated refrigerant-134a vapor at 15 psia is...Ch. 7.13 - Describe the ideal process for an (a) adiabatic...Ch. 7.13 - Is the isentropic process a suitable model for...Ch. 7.13 - On a T-s diagram, does the actual exit state...Ch. 7.13 - Steam at 100 psia and 650F is expanded...Ch. 7.13 - Prob. 117PCh. 7.13 - Combustion gases enter an adiabatic gas turbine at...Ch. 7.13 - Steam at 4 MPa and 350C is expanded in an...Ch. 7.13 - Prob. 120PCh. 7.13 - Prob. 122PCh. 7.13 - Prob. 123PCh. 7.13 - Refrigerant-134a enters an adiabatic compressor as...Ch. 7.13 - Prob. 126PCh. 7.13 - Argon gas enters an adiabatic compressor at 14...Ch. 7.13 - Air enters an adiabatic nozzle at 45 psia and 940F...Ch. 7.13 - Prob. 130PCh. 7.13 - An adiabatic diffuser at the inlet of a jet engine...Ch. 7.13 - Hot combustion gases enter the nozzle of a...Ch. 7.13 - Refrigerant-134a is expanded adiabatically from...Ch. 7.13 - Oxygen enters an insulated 12-cm-diameter pipe...Ch. 7.13 - Prob. 135PCh. 7.13 - Prob. 136PCh. 7.13 - Steam enters an adiabatic turbine steadily at 7...Ch. 7.13 - 7–138 In an ice-making plant, water at 0°C is...Ch. 7.13 - Water at 20 psia and 50F enters a mixing chamber...Ch. 7.13 - Prob. 140PCh. 7.13 - Prob. 141PCh. 7.13 - Prob. 142PCh. 7.13 - Prob. 143PCh. 7.13 - In a dairy plant, milk at 4C is pasteurized...Ch. 7.13 - An ordinary egg can be approximated as a...Ch. 7.13 - Prob. 146PCh. 7.13 - Prob. 147PCh. 7.13 - In a production facility, 1.2-in-thick, 2-ft 2-ft...Ch. 7.13 - Prob. 149PCh. 7.13 - Prob. 150PCh. 7.13 - A frictionless pistoncylinder device contains...Ch. 7.13 - Prob. 152PCh. 7.13 - Prob. 153PCh. 7.13 - Prob. 154PCh. 7.13 - Prob. 155PCh. 7.13 - Liquid water at 200 kPa and 15C is heated in a...Ch. 7.13 - Prob. 157PCh. 7.13 - Prob. 158PCh. 7.13 - Prob. 159PCh. 7.13 - Prob. 160PCh. 7.13 - Prob. 161PCh. 7.13 - Prob. 162PCh. 7.13 - Prob. 163PCh. 7.13 - Prob. 164PCh. 7.13 - Prob. 165PCh. 7.13 - The space heating of a facility is accomplished by...Ch. 7.13 - Prob. 167PCh. 7.13 - Prob. 168PCh. 7.13 - Prob. 169RPCh. 7.13 - A refrigerator with a coefficient of performance...Ch. 7.13 - Prob. 171RPCh. 7.13 - Prob. 172RPCh. 7.13 - Prob. 173RPCh. 7.13 - A 100-lbm block of a solid material whose specific...Ch. 7.13 - Prob. 175RPCh. 7.13 - Prob. 176RPCh. 7.13 - A pistoncylinder device initially contains 15 ft3...Ch. 7.13 - Prob. 178RPCh. 7.13 - A 0.8-m3 rigid tank contains carbon dioxide (CO2)...Ch. 7.13 - Helium gas is throttled steadily from 400 kPa and...Ch. 7.13 - Air enters the evaporator section of a window air...Ch. 7.13 - Refrigerant-134a enters a compressor as a...Ch. 7.13 - Prob. 183RPCh. 7.13 - Three kg of helium gas at 100 kPa and 27C are...Ch. 7.13 - Prob. 185RPCh. 7.13 -
7–186 You are to expand a gas adiabatically from...Ch. 7.13 - Prob. 187RPCh. 7.13 - Determine the work input and entropy generation...Ch. 7.13 - Prob. 189RPCh. 7.13 - Prob. 190RPCh. 7.13 - Air enters a two-stage compressor at 100 kPa and...Ch. 7.13 - Steam at 6 MPa and 500C enters a two-stage...Ch. 7.13 - Prob. 193RPCh. 7.13 - Prob. 194RPCh. 7.13 - Prob. 196RPCh. 7.13 - Prob. 197RPCh. 7.13 - 7–198 To control the power output of an isentropic...Ch. 7.13 - Prob. 199RPCh. 7.13 - Prob. 200RPCh. 7.13 - A 5-ft3 rigid tank initially contains...Ch. 7.13 - Prob. 202RPCh. 7.13 - Prob. 203RPCh. 7.13 - Prob. 204RPCh. 7.13 - Prob. 205RPCh. 7.13 - Prob. 206RPCh. 7.13 - Prob. 207RPCh. 7.13 - Prob. 208RPCh. 7.13 - (a) Water flows through a shower head steadily at...Ch. 7.13 - Prob. 211RPCh. 7.13 - Prob. 212RPCh. 7.13 - Prob. 213RPCh. 7.13 - Consider the turbocharger of an internal...Ch. 7.13 - Prob. 215RPCh. 7.13 - Prob. 216RPCh. 7.13 - Prob. 217RPCh. 7.13 - Consider two bodies of identical mass m and...Ch. 7.13 - Prob. 220RPCh. 7.13 - Prob. 222RPCh. 7.13 - Prob. 224RPCh. 7.13 - The polytropic or small stage efficiency of a...Ch. 7.13 - Steam is compressed from 6 MPa and 300C to 10 MPa...Ch. 7.13 - An apple with a mass of 0.12 kg and average...Ch. 7.13 - A pistoncylinder device contains 5 kg of saturated...Ch. 7.13 - Prob. 229FEPCh. 7.13 - Prob. 230FEPCh. 7.13 - A unit mass of a substance undergoes an...Ch. 7.13 - A unit mass of an ideal gas at temperature T...Ch. 7.13 - Prob. 233FEPCh. 7.13 - Prob. 234FEPCh. 7.13 - Air is compressed steadily and adiabatically from...Ch. 7.13 - Argon gas expands in an adiabatic turbine steadily...Ch. 7.13 - Water enters a pump steadily at 100 kPa at a rate...Ch. 7.13 - Air is to be compressed steadily and...Ch. 7.13 - Helium gas enters an adiabatic nozzle steadily at...Ch. 7.13 - Combustion gases with a specific heat ratio of 1.3...Ch. 7.13 - Steam enters an adiabatic turbine steadily at 400C...Ch. 7.13 - Liquid water enters an adiabatic piping system at...Ch. 7.13 - Prob. 243FEPCh. 7.13 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 7.13 - Helium gas is compressed steadily from 90 kPa and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A turbojet aircraft flies with a velocity of 260 m/s in through air at -40°C and 35 kPa. The compressor pressure ratio is 10 while hot gasses at 1350 K enter the turbine at a mass flow rate of 45 kg/s. Assume the cold-air-standard and that the diffuser, compressor, turbine, and nozzle are all isentropic. Report your answers to four significant digits using rounding. Report the temperature of the air after the diffuser in K rounded to one decimal place. Report the temperature of the air after the compressor in K rounded to one decimal place.arrow_forwardIn a steady-state process air enters an insulated compressor at 320 K and 100 kPa and exits at 418 kPa. If the isentropic compressor efficiency is 80% calculate the rate of entropy generation in kW/K using variable specific heats approach per unit mass flow rate (1 kg/s) of air. a. 0.043 O b. 0.051 c. 0.059 d. 0.064 e. 0.071 f. 0.083 g. 0.089arrow_forwardAn air turbine operates with P₁ = 1200 kPa and T₁ = 1500 K at the inlet, an inlet area of A₁ = 0.1 m², an inlet velocity of V₁ = 15 m/s, an exit pressure of P₂ = 100 kPa, and an isentropic efficiency of n = 90%. Complete a thermodynamic analysis of the turbine, assuming the specific heats are constant with k = 9/7, by finding: (A) The temperature at the exit, T2, (B) the mass flow rate through the turbine, m, (C) the work produced by the turbine, Wr, and (D) the rate of entropy production in the turbine, Šgen. Plot the process on a T-s diagram and clearly label states 1, 2s, and 2. WTarrow_forward
- Steam enters an adiabatic turbine at a given 9,200 kpa and the temperature is 475 degree celsius with a mass flow rate of 87 kg/s. The surrounding temperature is 300 kelvin. The effeiciency of the turbin is also said to be 0.75. With this given data, what would be the entropy generation rate, value of ideal work, and value of the lost work? note: steam is superheated.arrow_forwardAir at a 800 kPa and 1300 K enters an adiabatic and reversible turbine with a mass flow rate 6 kg/s. The outlet pressure is 100 kPa and assume that specific heats vary with temperature. Select all appropriate assumptions Question 1 options: Non-ideal gas. Ideal gas Steady flow Unsteady flow Adiabatic Neglect kinetic and potential energy Accound of kinetic and potential energy No work Isobaric Isothermal Isochoric Isentropic Exact analysis Approximate analysisarrow_forwardA dry-steam well is characterized by a closed-in pressure of P1 2500 kPa and saturated vapor. The wellhead valve is set at P2 1000 kPa, at which condition the well flows 25.2 kg/s. You may assume the turbine is adiabatic and has a constant isentropic efficiency of 3. 75%. (a) Calculate the power in MW that the turbine will generate under the following two cases: (i) there is no condenser and the turbine exhausts to the atmosphere at 1 atm and (ii) there is a condenser that has a pressure of 13.5 kPa. (b) Calculate the utilization efficiency in both cases, based on the closed-in condition of the geofluid. Take atmospheric conditions at 25°C and 1 atm.arrow_forward
- An adiabatic and steady-flow turbine with air as the working fluid initially at 6000 kPa and 550 K has a flow rate of 13.5 kg/s. At the exit of this turbine the air expands by 10 times its original specific volume to a pressure of 320 kPa. (a)What is the temperature of the air at the outlet of the turbine (in K)? Provide your answer up to 1 decimal place using rounding (b)Assume that specific heats vary with temperature. What is the power produced in kW? Round your answer to the nearest whole number. (c)If specific heats are evaluated at the average temperature, what is the power produced by this turbine in kW? Round your answer to the nearest whole number.arrow_forwardA well-insulated compressor takes air at 320 K and 100 kPa and increases its pressure to 418 kPa in a steady process. Assume the isentropic compressor efficiency is 80% and the mass flow rate of air is 1 kg/s. Use variable specific heats approach to determine • the required power in kW = • the rate of entropy generation in W/K = 147.3 || 161.8 172.7 183.1 || 202.8 || 212.3 || 224.5 42.8 59.0 || 63.5 |71.2 || 82.6 || 88.8 || 97.1arrow_forwardQuestion 4 The air compressor in the core of the CFM56-5A1 turbofan engine of the Airbus A320 compressors 50 kg/s of air at 5°C and 0.8bar to 30bar. The compressor has an isentropic efficiency of 85%. Calculate the isentropic and actual temperature at exit from the compressor. You can assume for air that y=1.4 cp = 1005 J/kg K You can assume for isentropic compression. P₂ P₁ T₁ Compressor Isentropic efficiency is n = T25 -11 7₂-41 Where T₁ is the temperature at the start of compression in Kelvin and T₂ is the temperature at the end of compression in Kelvin. The subscripts is for temperature at the end of isentropic compression. =arrow_forward
- Methane is compressed in a two-stage, double-acting compressor which is electrically driven at 165 rpm. The low pressure cylinder (30.5 times 35.5 cm) receives 6.86 cu m per minute of air at 96.53 kPa, 43.3 degree C, and the high pressure cylinder (20.3 times 35.5 cm) discharges the methane at 717.06 kPa. The isothermal overall efficiency is 74%. Find n_v and the kW output of the motor.arrow_forwardMethane is compressed in a two-stage, double-acting compressor which is electrically driven at 165 rpm. The low pressure cylinder (30.5 times 35.5 cm) receives 6.86 cu m per minute of air at 96.53 kPa, 43.3 degree C, and the high pressure cylinder (20.3 times 35.5 cm) discharges the methane at 717.06 kPa. The isothermal overall efficiency is 74%. Find n_v and the kW output of the motor.arrow_forwardA turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 83.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85 %. The turbine inlet temperature is 1,140 K, and its isentropic efficiency is 85 %. The turbine exit pressure is 50 kPa. Flow through the diffuser and nozzle is isentropic. Sketch the process on the T-s diagram and using an air-standard analysis, determine, the power delivered to the propeller, in MWt the velocity at the nozzle exit, in m/s. Neglect kinetic energy except at the diffuser inlet and the nozzle exit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY