![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9780073398174/9780073398174_largeCoverImage.gif)
The work and heat transfer for each process.
![Check Mark](/static/check-mark.png)
Answer to Problem 176RP
The heat transfer for the isothermal process 1–2 is
The work done during the process 1-2 is
The work done during the isentropic compression process 2-3 is
The heat transfer for the isentropic process 2–3 is
The work done during constant pressure compression process 3-1 is
The heat transfer during constant pressure compression process 3-1 is
Explanation of Solution
Write the expression to calculate the enthalpy change in process 1-2.
Here, pressure at process 1 is
Write the expression to calculate the ideal gas equation, to find mass of the air.
Here, mass of the air is m , volume at process 1 is
Write the expression to calculate the heat transfer for the isothermal process 1–2.
Here, enthalpy change in process 1-2 is
Write the expression to calculate the work done during the process 1-2
Write the expression to calculate the work done during the isentropic compression process 2-3
Here, mass of the air is m, internal energy at process 3 is
Write the expression to calculate the relative pressure at process 3
Here, relative pressure at process 2 is
Write the expression to calculate the volume at process 3
Write the expression to calculate the work done during constant pressure compression process 3-1
Here, volume at process 3 is
Write the expression to calculate the heat transfer during constant pressure compression process 3-1
Here, heat transfer during constant pressure compression process 3-1 is
Conclusion:
From Table A-1 “the molar mass, gas constant and critical point properties table”, obtain the gas constant
Substitute
Substitute 1.394 kg for m,
Substitute
Thus, the heat transfer for the isothermal process 1–2 is
Substitute
Thus, the work done during the process 1-2 is
From Table A-17, “Ideal-gas properties of air”, obtain the internal energy
Substitute
Refer to Table A-17, “Ideal-gas properties of air”.
Obtain the select the internal energy
Write the formula of interpolation method of two variables.
Here, the variables denoted by x and y are relative pressure and internal energy.
Show relative pressure and internal energy values from the Table A-17.
Relative pressure | Internal energy |
3.481 | 278.93 |
3.696 | ? |
3.806 | 286.16 |
Substitute
The value of internal energy process 1
Show temperature and initial internal energy values from the Table A-17.
Temperature | Internal energy |
3.481 | 390 |
3.696 | ? |
3.806 | 400 |
Substitute
The value of Temperature
Substitute 1.394 kg for m,
Thus, the work done during the isentropic compression process 2-3 is
The heat transfer for the isentropic process 2–3 is zero when entropy change remains unchanged for the isentropic compression process.
Thus, the heat transfer for the isentropic process 2–3 is
Substitute 1.394 kg for m,
Substitute
Thus, the work done during constant pressure compression process 3-1 is
Substitute 37 kJ for
Thus, the heat transfer during constant pressure compression process 3-1 is
Want to see more full solutions like this?
Chapter 7 Solutions
Thermodynamics: An Engineering Approach
- 3-137arrow_forwardLarge wind turbines with a power capacity of 8 MW and blade span diameters of over 160 m areavailable for electric power generation. Consider a wind turbine with a blade span diameter of 120m installed at a site subjected to steady winds at 8.25 m/s. Taking the overall efficiency of thewind turbine to be 33 percent and the air density to be 1.25 kg/m3, determine the electric powergenerated by this wind turbine. Also, assuming steady winds of 8.25 m/s during a 24-h period,determine the amount of electric energy and the revenue generated per day for a unit price of$0.08/kWh for electricity.arrow_forwardThe basic barometer can be used to measure the height of a building. If the barometric readingsat the top and at the bottom of a building are 672 and 696 mmHg, respectively, determine theheight of the building. Take the densities of air and mercury to be 1.18 kg/m3 and 13,600 kg/m3,respectivelyarrow_forward
- A 7.25-hp (shaft) pump is used to raise water to an elevation of 17 m. If the mechanical efficiencyof the pump is 84 percent, determine the maximum volume flow rate of water.arrow_forwardConsider a double-fluid manometer attached to an air pipe shown below. If the specific gravity ofone fluid is 13.8, determine the specific gravity of the other fluid for the indicated absolutepressure of air. Take the atmospheric pressure to be 95 kPaarrow_forwardA race car enters the circular portion of a track that has a radius of 65 m. Disregard the 70 m in the picture. When the car enters the curve at point P, it is traveling with a speed of 120 km/h that is increasing at 5 m/s^2 . Three seconds later, determine the x and y components of velocity and acceleration of the car. I'm having trouble getting the correct y component of acceleration. all the other answers are correct. thank you!arrow_forward
- Figure: 06_P041 Copyright 2013 Pearson Education, publishing a Prentice Hall 2. Determine the force that the jaws J of the metal cutters exert on the smooth cable C if 100-N forces are applied to the handles. The jaws are pinned at E and A, and D and B. There is also a pin at F. 400 mm 15° 20 mm A 15° 15 D B 30 mm² 80 mm 20 mm 400 mm Figure: 06_P090 Copyright 2013 Pearson Education, publishing as Prentice Hall 15° 100 N 100 N 15°arrow_forwardA telemetry system is used to quantify kinematic values of a ski jumper immediately before the jumper leaves the ramp. According to the system r=560 ft , r˙=−105 ft/s , r¨=−10 ft/s2 , θ=25° , θ˙=0.07 rad/s , θ¨=0.06 rad/s2 Determine the velocity of the skier immediately before leaving the jump. The velocity of the skier immediately before leaving the jump along with its direction is ? I have 112.08 ft/s but can't seem to get the direction correct. Determine the acceleration of the skier at this instant. At this instant, the acceleration of the skier along with its direction is ? acceleration is 22.8 ft/s^2 but need help with direction. Need help with velocity direction and acceleration direction please.arrow_forwardFor Problems 18-22 (Table 7-27), design a V-belt drive. Specify the belt size, the sheave sizes, the number of belts, the actual output speed, and the center distance.arrow_forward
- only 21arrow_forwardonly 41arrow_forwardNormal and tangential components-relate to x-y coordinates A race car enters the circular portion of a track that has a radius of 65 m. When the car enters the curve at point P, it is traveling with a speed of 120 km/h that is increasing at 5 m/s^2 . Three seconds later, determine the x and y components of velocity and acceleration of the car. I need help with finding the y component of the total acceleration. I had put -32 but its incorrect. but i keep getting figures around that numberarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)