Liquid water at 200 kPa and 15°C is heated in a chamber by mixing it with superheated steam at 200 kPa and 150°C. Liquid water enters the mixing chamber at a rate of 4.3 kg/s, and the chamber is estimated to lose heat to the surrounding air at 20°C at a rate of 1200 kJ/min. If the mixture leaves the mixing chamber at 200 kPa and 80°C, determine (a) the mass flow rate of the superheated steam and (b) the rate of entropy generation during this mixing process.
FIGURE P7–154
a)
The mass flow rate of the superheated steam.
Answer to Problem 156P
The mass flow rate of the superheated steam is
Explanation of Solution
Write the expression for the energy balance equation for closed system.
Here, rate of net energy transfer in to the control volume is
Write the expression to calculate the mass balance of the system.
Here, inlet mass flow rate is
Conclusion:
Substitute 0 for
Here, mass flow rate at entry 1 is
Substitute
Rewrite the Equation (IV) to calculate the mass flow rate at entry 2.
From Table A-4, “the saturated water table”, select the initial enthalpy at entry 1
From Table A-6, “Superheated water”, select the initial enthalpy at entry 2
From Table A-4, “the saturated water table”, select the enthalpy at exit
Substitute
Thus, the mass flow rate of the superheated steam is
b)
The rate of heat entropy generation during the process.
Answer to Problem 156P
The rate of heat entropy generation during the process is
Explanation of Solution
Write the expression for the entropy balance during the process.
Here, rate of net input entropy is
Conclusion:
Substitute
Here, entropy at entry 1 is
Substitute
Substitute
Substitute
Thus, the rate of heat entropy generation during the process is
Want to see more full solutions like this?
Chapter 7 Solutions
Thermodynamics: An Engineering Approach
- A 2-m³ insulated tank initially containing saturated water vapor at 1 MPa is connected through a valve to a supply line that carries steam at 400 kPa. Now the valve is opened, and steam is allowed to flow slowly into the tank until the pressure in the tank rises to 2 MPa. At this instant the tank temperature is measured to be 450°C. (a) Determine the mass of the steam that has entered and the temperature of the steam in the supply line, and (b) If the tank was initially evacuated while everything else was kept the same, what would be the temperature of the steam in the supply line?arrow_forwardSteam enters a diffuser at 20 psia and 240°F with a velocity of 900 ft/s and exits as saturated vapor at 240°F and 100 ft/s. The exit area of the diffuser is 1 ft2 . Determine the mass flow rate of the steam.arrow_forwardA hot-water stream at 80°C enters a mixing chamber with a mass flow rate of 0.5 kg/s where it is mixed with a stream of cold water at 20°C. If it is desired that the mixture leave the chamber at 42°C, determine the mass flow rate of the cold-water stream. Assume all the streams are at a pressure of 250 kPa.arrow_forward
- Nitrogen gas is compressed from 80 kPa and 27°C to 480 kPa by a 10-kW compressor. Determine the mass flow rate of nitrogen through the compressor, assuming the compression process to be isothermal.arrow_forward(a) 20 kg of water at 125°C and 400 kPa is contained in a piston-cylinder device. Heat is transferred to the water until the pressure is 800 kPa and the volume of the piston-cylinder has increased by 70%. Determine the amount of heat transfer during the process (kJ). (b) Air enters an adiabatic nozzle at 750 kPa and 307°C with velocity of 300 m/s. It leaves the nozzle at 77°C. The inlet area of the nozzle is two times larger than the exit area. Determine the final pressure of the air (kPa).arrow_forwardWater at 80°F and 20 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. If both streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream.arrow_forward
- A stream of refrigerant-134a at 1 MPa and 12°C is mixed with another stream at 1 MPaand 60°C. If the mass flow rate of the cold stream is twice that of the hot one, determine the temperature and the quality of the exit stream.arrow_forwardA 2 m3 tank initially contains a mixture of saturated-vapor steam and saturated-liquid water at 3200 kPa. Of the total mass, 10% is vapor. Saturated-liquid water is bled from the tank through a valve until the total mass in the tank is 40% of the initial total mass. If during the process the temperature of the contents of the tank is kept constant, how much heat is transferred?arrow_forwardA 0.3-m3 rigid tank initially contains refrigerant- 134a at 14°C. At this state, 55 percent of the mass is in the vapor phase, and the rest is in the liquid phase. The tank is connected by a valve to a supply line where refrigerant at 1.4 MPa and 100°C flows steadily. Now the valve is opened slightly, and the refrigerant is allowed to enter the tank. When the pressure in the tank reaches 1 MPa, the entire refrigerant in the tank exists in the vapor phase only. At this point the valve is closed. Determine (a) the final temperature in the tank, (b) the mass of refrigerant that has entered the tank, and (c) the heat transfer between the system and the surroundings.arrow_forward
- Steam at a pressure of 2MPA and temperature 300°C is passed at a constant rate into a desuperheater unit. The desuperheater is accomplished by continuously spraying water at 95 °C onto incoming superheated steam. The amount of water injected is so regulated that both the water and superheated steam finally change into dry steam at 2 MPa. If the resulting mixture of dry saturated steam leaves the desuperheater at 2MPA and the rate of 1 kg/s, find the mass of superheated steam used per hour and the mass of water to be injected per hour. Fond also the diameter of the pipe through which the superheated steam flows to the superheater if the speed of the steam through the pipe is not to exceed (steam 3290.4kg/h; water 1. 25m/s. . 309.6kg/h; 76.5mm)arrow_forwardIn a gas turbine plant, air enters the compressor at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 382°C with a velocity of 80 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 230 kW. (i) Identify the enthalpy of air (units: kJ/kg) at the compressor inlet, (ii) Identify the enthalpy of air (units: kJ/kg) at the compressor exit, and (iii) Determine the mass flow rate of air (units: kg/s) through the compressor.arrow_forwardHelium gas enters an adiabatic nozzle at 37 psia and 790 R with an initial velocity of 9 ft/s. The helium leaves the nozzle at 721 R and 28 psia. What is the velocity of the helium at the nozzle's exit?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY