Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.13, Problem 24P
During the isothermal heat addition process of a Carnot cycle, 900 kJ of heat is added to the working fluid from a source at 400°C. Determine (a) the entropy change of the working fluid, (b) the entropy change of the source, and (c) the total entropy change for the process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0°C. Energy
is added until the ice has just melted. The temperature at the boundary where
heat transfer occurs is taken to be the system temperature during the process. The
enthalpy of melting is 333.5 kJ/kg. Consider the following processes used to melt
the ice.
a. Heat is added from the environment at 20°C. Determine the entropy flux and
the total entropy generation, both in kJ/K.
b. Heat is added from a reservoir at 727°C. Determine the same quantities as in
part (a).
c. Paddle-wheel work is used to change the state. Determine the total entropy
production for the process, in kJ/K.
d. Comment on the relative degree of irreversibility for the three processes.
Steam is accelerated as it flows through an actual adiabatic nozzle. The entropy of the steam at the nozzle exit will be (greater than, equal to, less than) the entropy at the nozzle inlet.
1. Air enters a compressor steadily at the ambient conditions of 100 kPa and 22°C
and leaves at 800 kPa. Heat is lost from the compressor in the amount of 120
kJ/kg, and the air experiences an entropy decrease of 0.40 kJ/kg-K. Using con-
stant specific heats, determine
(a) the exit temperature of the air,
(b) the work input to the compressor, and
(c) the entropy generation during this process.
Chapter 7 Solutions
Thermodynamics: An Engineering Approach
Ch. 7.13 - Prob. 1PCh. 7.13 - Does the cyclic integral of heat have to be zero...Ch. 7.13 - Is a quantity whose cyclic integral is zero...Ch. 7.13 - Prob. 4PCh. 7.13 - Prob. 5PCh. 7.13 - How do the values of the integral 12Q/T compare...Ch. 7.13 - The entropy of a hot baked potato decreases as it...Ch. 7.13 - When a system is adiabatic, what can be said about...Ch. 7.13 - Prob. 9PCh. 7.13 - A pistoncylinder device contains helium gas....
Ch. 7.13 - A pistoncylinder device contains nitrogen gas....Ch. 7.13 - A pistoncylinder device contains superheated...Ch. 7.13 - The entropy of steam will (increase, decrease,...Ch. 7.13 - Prob. 14PCh. 7.13 - Prob. 15PCh. 7.13 - Prob. 16PCh. 7.13 - Steam is accelerated as it flows through an actual...Ch. 7.13 - Prob. 18PCh. 7.13 - Prob. 19PCh. 7.13 - Prob. 20PCh. 7.13 - Heat in the amount of 100 kJ is transferred...Ch. 7.13 - In Prob. 719, assume that the heat is transferred...Ch. 7.13 - 7–23 A completely reversible heat pump produces...Ch. 7.13 - During the isothermal heat addition process of a...Ch. 7.13 - Prob. 25PCh. 7.13 - During the isothermal heat rejection process of a...Ch. 7.13 - Prob. 27PCh. 7.13 - Prob. 28PCh. 7.13 - Two lbm of water at 300 psia fill a weighted...Ch. 7.13 - A well-insulated rigid tank contains 3 kg of a...Ch. 7.13 - The radiator of a steam heating system has a...Ch. 7.13 - A rigid tank is divided into two equal parts by a...Ch. 7.13 - 7–33 An insulated piston–cylinder device contains...Ch. 7.13 - Prob. 34PCh. 7.13 - Prob. 35PCh. 7.13 - Onekg of R-134a initially at 600 kPa and 25C...Ch. 7.13 - Refrigerant-134a is expanded isentropically from...Ch. 7.13 - Prob. 38PCh. 7.13 - Refrigerant-134a at 320 kPa and 40C undergoes an...Ch. 7.13 - A rigid tank contains 5 kg of saturated vapor...Ch. 7.13 - A 0.5-m3 rigid tank contains refrigerant-134a...Ch. 7.13 - Prob. 44PCh. 7.13 - Prob. 45PCh. 7.13 - Steam enters an adiabatic diffuser at 150 kPa and...Ch. 7.13 - Prob. 47PCh. 7.13 - An isentropic steam turbine processes 2 kg/s of...Ch. 7.13 - Prob. 50PCh. 7.13 -
7–51 0.7-kg of R-134a is expanded isentropically...Ch. 7.13 - Twokg of saturated water vapor at 600 kPa are...Ch. 7.13 - Steam enters a steady-flow adiabatic nozzle with a...Ch. 7.13 - Prob. 54PCh. 7.13 - In Prob. 755, the water is stirred at the same...Ch. 7.13 - A pistoncylinder device contains 5 kg of steam at...Ch. 7.13 - Prob. 57PCh. 7.13 - Prob. 59PCh. 7.13 - A 50-kg copper block initially at 140C is dropped...Ch. 7.13 - Prob. 61PCh. 7.13 - Prob. 62PCh. 7.13 - A 30-kg aluminum block initially at 140C is...Ch. 7.13 - A 30-kg iron block and a 40-kg copper block, both...Ch. 7.13 - An adiabatic pump is to be used to compress...Ch. 7.13 - Prob. 67PCh. 7.13 - Can the entropy of an ideal gas change during an...Ch. 7.13 - An ideal gas undergoes a process between two...Ch. 7.13 - Prob. 72PCh. 7.13 - Prob. 73PCh. 7.13 - Prob. 74PCh. 7.13 - Prob. 75PCh. 7.13 - A 1.5-m3 insulated rigid tank contains 2.7 kg of...Ch. 7.13 - An insulated pistoncylinder device initially...Ch. 7.13 - A pistoncylinder device contains 0.75 kg of...Ch. 7.13 - Prob. 80PCh. 7.13 - 7–81 Air enters a nozzle steadily at 280 kPa and...Ch. 7.13 - A mass of 25 lbm of helium undergoes a process...Ch. 7.13 - One kg of air at 200 kPa and 127C is contained in...Ch. 7.13 - Prob. 85PCh. 7.13 - Air at 3.5 MPa and 500C is expanded in an...Ch. 7.13 -
7–87E Air is compressed in an isentropic...Ch. 7.13 - An insulated rigid tank is divided into two equal...Ch. 7.13 - An insulated rigid tank contains 4 kg of argon gas...Ch. 7.13 - Prob. 90PCh. 7.13 - Prob. 91PCh. 7.13 - Prob. 92PCh. 7.13 - Air at 27C and 100 kPa is contained in a...Ch. 7.13 - Prob. 94PCh. 7.13 - Helium gas is compressed from 90 kPa and 30C to...Ch. 7.13 - Five kg of air at 427C and 600 kPa are contained...Ch. 7.13 - Prob. 97PCh. 7.13 - The well-insulated container shown in Fig. P 795E...Ch. 7.13 - Prob. 99PCh. 7.13 - Prob. 100PCh. 7.13 - It is well known that the power consumed by a...Ch. 7.13 - Prob. 102PCh. 7.13 - Prob. 103PCh. 7.13 - Saturated water vapor at 150C is compressed in a...Ch. 7.13 - Liquid water at 120 kPa enters a 7-kW pump where...Ch. 7.13 - Prob. 106PCh. 7.13 - Consider a steam power plant that operates between...Ch. 7.13 - Helium gas is compressed from 16 psia and 85F to...Ch. 7.13 - Nitrogen gas is compressed from 80 kPa and 27C to...Ch. 7.13 - Saturated refrigerant-134a vapor at 15 psia is...Ch. 7.13 - Describe the ideal process for an (a) adiabatic...Ch. 7.13 - Is the isentropic process a suitable model for...Ch. 7.13 - On a T-s diagram, does the actual exit state...Ch. 7.13 - Steam at 100 psia and 650F is expanded...Ch. 7.13 - Prob. 117PCh. 7.13 - Combustion gases enter an adiabatic gas turbine at...Ch. 7.13 - Steam at 4 MPa and 350C is expanded in an...Ch. 7.13 - Prob. 120PCh. 7.13 - Prob. 122PCh. 7.13 - Prob. 123PCh. 7.13 - Refrigerant-134a enters an adiabatic compressor as...Ch. 7.13 - Prob. 126PCh. 7.13 - Argon gas enters an adiabatic compressor at 14...Ch. 7.13 - Air enters an adiabatic nozzle at 45 psia and 940F...Ch. 7.13 - Prob. 130PCh. 7.13 - An adiabatic diffuser at the inlet of a jet engine...Ch. 7.13 - Hot combustion gases enter the nozzle of a...Ch. 7.13 - Refrigerant-134a is expanded adiabatically from...Ch. 7.13 - Oxygen enters an insulated 12-cm-diameter pipe...Ch. 7.13 - Prob. 135PCh. 7.13 - Prob. 136PCh. 7.13 - Steam enters an adiabatic turbine steadily at 7...Ch. 7.13 - 7–138 In an ice-making plant, water at 0°C is...Ch. 7.13 - Water at 20 psia and 50F enters a mixing chamber...Ch. 7.13 - Prob. 140PCh. 7.13 - Prob. 141PCh. 7.13 - Prob. 142PCh. 7.13 - Prob. 143PCh. 7.13 - In a dairy plant, milk at 4C is pasteurized...Ch. 7.13 - An ordinary egg can be approximated as a...Ch. 7.13 - Prob. 146PCh. 7.13 - Prob. 147PCh. 7.13 - In a production facility, 1.2-in-thick, 2-ft 2-ft...Ch. 7.13 - Prob. 149PCh. 7.13 - Prob. 150PCh. 7.13 - A frictionless pistoncylinder device contains...Ch. 7.13 - Prob. 152PCh. 7.13 - Prob. 153PCh. 7.13 - Prob. 154PCh. 7.13 - Prob. 155PCh. 7.13 - Liquid water at 200 kPa and 15C is heated in a...Ch. 7.13 - Prob. 157PCh. 7.13 - Prob. 158PCh. 7.13 - Prob. 159PCh. 7.13 - Prob. 160PCh. 7.13 - Prob. 161PCh. 7.13 - Prob. 162PCh. 7.13 - Prob. 163PCh. 7.13 - Prob. 164PCh. 7.13 - Prob. 165PCh. 7.13 - The space heating of a facility is accomplished by...Ch. 7.13 - Prob. 167PCh. 7.13 - Prob. 168PCh. 7.13 - Prob. 169RPCh. 7.13 - A refrigerator with a coefficient of performance...Ch. 7.13 - Prob. 171RPCh. 7.13 - Prob. 172RPCh. 7.13 - Prob. 173RPCh. 7.13 - A 100-lbm block of a solid material whose specific...Ch. 7.13 - Prob. 175RPCh. 7.13 - Prob. 176RPCh. 7.13 - A pistoncylinder device initially contains 15 ft3...Ch. 7.13 - Prob. 178RPCh. 7.13 - A 0.8-m3 rigid tank contains carbon dioxide (CO2)...Ch. 7.13 - Helium gas is throttled steadily from 400 kPa and...Ch. 7.13 - Air enters the evaporator section of a window air...Ch. 7.13 - Refrigerant-134a enters a compressor as a...Ch. 7.13 - Prob. 183RPCh. 7.13 - Three kg of helium gas at 100 kPa and 27C are...Ch. 7.13 - Prob. 185RPCh. 7.13 -
7–186 You are to expand a gas adiabatically from...Ch. 7.13 - Prob. 187RPCh. 7.13 - Determine the work input and entropy generation...Ch. 7.13 - Prob. 189RPCh. 7.13 - Prob. 190RPCh. 7.13 - Air enters a two-stage compressor at 100 kPa and...Ch. 7.13 - Steam at 6 MPa and 500C enters a two-stage...Ch. 7.13 - Prob. 193RPCh. 7.13 - Prob. 194RPCh. 7.13 - Prob. 196RPCh. 7.13 - Prob. 197RPCh. 7.13 - 7–198 To control the power output of an isentropic...Ch. 7.13 - Prob. 199RPCh. 7.13 - Prob. 200RPCh. 7.13 - A 5-ft3 rigid tank initially contains...Ch. 7.13 - Prob. 202RPCh. 7.13 - Prob. 203RPCh. 7.13 - Prob. 204RPCh. 7.13 - Prob. 205RPCh. 7.13 - Prob. 206RPCh. 7.13 - Prob. 207RPCh. 7.13 - Prob. 208RPCh. 7.13 - (a) Water flows through a shower head steadily at...Ch. 7.13 - Prob. 211RPCh. 7.13 - Prob. 212RPCh. 7.13 - Prob. 213RPCh. 7.13 - Consider the turbocharger of an internal...Ch. 7.13 - Prob. 215RPCh. 7.13 - Prob. 216RPCh. 7.13 - Prob. 217RPCh. 7.13 - Consider two bodies of identical mass m and...Ch. 7.13 - Prob. 220RPCh. 7.13 - Prob. 222RPCh. 7.13 - Prob. 224RPCh. 7.13 - The polytropic or small stage efficiency of a...Ch. 7.13 - Steam is compressed from 6 MPa and 300C to 10 MPa...Ch. 7.13 - An apple with a mass of 0.12 kg and average...Ch. 7.13 - A pistoncylinder device contains 5 kg of saturated...Ch. 7.13 - Prob. 229FEPCh. 7.13 - Prob. 230FEPCh. 7.13 - A unit mass of a substance undergoes an...Ch. 7.13 - A unit mass of an ideal gas at temperature T...Ch. 7.13 - Prob. 233FEPCh. 7.13 - Prob. 234FEPCh. 7.13 - Air is compressed steadily and adiabatically from...Ch. 7.13 - Argon gas expands in an adiabatic turbine steadily...Ch. 7.13 - Water enters a pump steadily at 100 kPa at a rate...Ch. 7.13 - Air is to be compressed steadily and...Ch. 7.13 - Helium gas enters an adiabatic nozzle steadily at...Ch. 7.13 - Combustion gases with a specific heat ratio of 1.3...Ch. 7.13 - Steam enters an adiabatic turbine steadily at 400C...Ch. 7.13 - Liquid water enters an adiabatic piping system at...Ch. 7.13 - Prob. 243FEPCh. 7.13 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 7.13 - Helium gas is compressed steadily from 90 kPa and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant-134a enters a compressor as a saturated vapor at 160 kPa at a rate of 0.03 m3/s and leaves at 800 kPa. The power input to the compressor is 10 kW. If the surroundings at 20C experience an entropy increase of 0.008 kW/K, determine (a) the rate of heat loss from the compressor, (b) the exit temperature of the refrigerant, and (c) the rate of entropy generation.arrow_forwardA well-insulated heat exchanger is to heat water(cp = 4.18 kJ/kg8C) from 25 to 60C at a rate of 0.50 kg/s. The heating is to be accomplished by geothermal water(cp = 4.31 kJ/kg8C) available at 140C at a mass flow rate of0.75 kg/s. Determine (a) the rate of heat transfer and (b) therate of entropy generation in the heat exchanger.arrow_forwardAir in a large building is kept warm by heating it with steam in a heat exchanger. Saturated water vapor enters this unit at 35°C at a rate of 10,000 kg/h and leaves as saturated liquid at 32°C. Air at 1-atm pressure enters the unit at 20°C and leaves at 30°C at about the same pressure. Determine the rate of entropy generation associated with this process.arrow_forward
- An adiabatic capillary tube is used in some refrigeration systems to drop the pressure of the refrigerant from the condenser level to the evaporator level. R-134a enters the capillary tube as a saturated liquid at 70 degrees Celsius and leaves at -20 degrees Celsius. Determine the rate of entropy generation in the capillary tube for a mass flow rate of 0.2 kg/s.arrow_forwardDetermine (a) the entropy change of the refrigerant, (b) the entropy change of the cooled spacearrow_forwardA 30-kg iron block initially at 280°C is quenched in an insulated tank that contains 100 kg of water at 18°C. Assuming the water that vaporizes during the process condenses back in the tank, determine the total entropy change during this process. The specific heat of water at 25°C is cp=4.18 kJ/kg-K. The specific heat of iron at room temperature is cp = 0.45 kJ/kg.K. The total entropy change during this process is kJ/K.arrow_forward
- Refrigerant-134a enters a compressor as a saturated vapor at 160 kPa at a rate of 0.03 m3 /s and leaves at 800 kPa. The power input to the compressor is 10 kW. If the surroundings at 20°C experience an entropy increase of 0.008 kW/K, determine the rate of entropy generation.arrow_forwardAir enters the evaporator section of a window air conditioner at 100 kPa and 27C with a volume flow rate of 6 m3/min. The refrigerant-134a at 120 kPa with a quality of 0.3 enters the evaporator at a rate of 2 kg/min and leaves as saturated vapor at the same pressure. Determine the exit temperature of the air and the rate of entropy generation for this process, assuming (a) the outer surfaces of the air conditioner are insulated and (b) heat is transferred to the evaporator of the air conditioner from the surrounding medium at 32C at a rate of 30 kJ/min.arrow_forwardHeat flows through a wall of a house at a steady-state on a day when the temperature of the outdoor air is 1°C and the air inside the house is maintained at 23°C. The temperatures of the inner surface of the wall is 4°C cooler than indoor air temperature. And the temperature of the outer surface of the wall is 2°C warmer than the outdoor air temperature. The rate of heat transfer through the wall is 900W. Determine the rate of total entropy generation associated with this heat transfer process (in W/K).arrow_forward
- 5-kg of air at 427C and 600 kPa are contained in a piston–cylinder device. The air expands adiabatically until the pressure is 100 kPa and produces 600 kJ of work output. Assume air has constant specific heats evaluated at 300 K. (a) Determine the entropy change of the air, in kJ/kg·K (b) Since the process is adiabatic, is the process realistic? Using concepts of the second law, support your answer.arrow_forwardAsap handwriting okkkkkkkkarrow_forwardAn adiabatic capillary tube is used in some refrigeration systems to drop the pressure of the refrigerant from the condenser level to the evaporator level. R-134a enters the capillary tube as a saturated liquid at 70C, and leaves at -20C. Determine the rate of entropy generation in the capillary tube for a mass flow rate of 0.2 kg/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license