Concept explainers
In the circuit of Fig. 7.144, find the value of io for all values of 0 < t.
Find the current
Answer to Problem 80P
The current
Explanation of Solution
Given data:
Refer to Figure 7.144 in the textbook.
The value of capacitance
The source voltage
The current source
Formula used:
Write the general expression to find the complete voltage response for an RC circuit.
Here,
Write the expression to find the time constant for an RC circuit.
Here,
C is the capacitance of the capacitor.
Write the general expression for the unit step function.
Calculation:
The given source voltage is,
Apply the unit step function in equation (3) to equation (4).
For
The given Figure 7.144 is redrawn as shown in Figure 1.
In Figure 1, the capacitor reaches steady state and it will acts as an open circuit. The initial voltage across the capacitor is denoted by
Apply Kirchhoff’s current law at node
Rearrange the equation as follows,
In Figure 1, the initial voltage across the capacitor
For
In Figure 2, the voltage source is equal to zero (or a short circuit). Now, the final voltage across the capacitor is represented by
Apply Kirchhoff’s current law at node
Rearrange the equation as follows,
In Figure 2, the final voltage across the capacitor
Figure 3 shows the Thevenin resistance at the capacitor terminal.
In Figure 3, the Thevenin resistance is calculated as follows.
Substitute
Substitute the units
Substitute
Figure 4 shows the modified circuit diagram.
Apply Kirchhoff’s current law at node
Substitute
Reduce the equation as follows,
Therefore, the current
Substitute
Convert the unit A to mA.
Apply the unit step function in equation (3) to equation (6).
PSpice Simulation:
For
Draw the circuit diagram in PSpice as shown in Figure 5.
Save the circuit and provide the Simulation Settings as shown in Figure 6.
Now run the simulation and the results will be displayed as shown in Figure 7 by enabling “Enable Bias Voltage Display” icon.
From Figure 7, the initial voltage across the capacitor is 17.5 V.
For
Draw the circuit diagram in PSpice as shown in Figure 8.
Now run the simulation and the results will be displayed as shown in Figure 8 by enabling “Enable Bias Voltage Display” icon.
From Figure 9, the final voltage across the capacitor is 5 V.
Draw the circuit diagram in PSpice as shown in Figure 10.
Now run the simulation and the results will be displayed as shown in Figure 11 by enabling “Enable Bias Voltage Display” icon and place the “Current Marker”
The SCHEMATIC1 dialog box is also opened with simulation result as shown in Figure 12.
Therefore, the plot of current through the
Conclusion:
Thus, the current
Want to see more full solutions like this?
Chapter 7 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
- NO AI. Please draw CT's on figure with directionarrow_forward15) Complex numbers 21 and 22 are given by Δ Δ Δ Z₁ = 21-60° 22 = 5/45° Determine in polar form: Z, Z₂ b) 21/22 Z₁ C) Z, Z₂ dz 2 zz Z f) JZ ₂ 9) z, (z₂-z₁) * ~22/(Z1+Zz) FAAAAAA Aarrow_forwardform: Express The following Complex numbers in rectangular № 2, b) Z₂ = -3e-jπ/4 c) 23 = √ 3 e d 24 11 -j 25 = ==J 3 -4 2 -j3π/4 f) 26 = (2 + j) 9) 2₂ = (3-j2)³ g D 27 AAA D A 35arrow_forward
- 0) Express The following complex numbers in polar form: az₁ = 3+ j4 2 b) 2₂ = -6+j8 C) 23 = 6j4 Z4=j2 d) 24 = j2 e) 25 = (2+ j)² 3 4) 26 = (3-j2) ³ JZ7 = (1+j) ½/2 27 D D D D D AA D AALarrow_forward21) Determine. The phasor counterparts of the following sinusoidal functions: (a) V₁ (t) = 4 cos (377-30°) V (B) V₂ (t) = -2sin (8T x 10"+ + 18°) V e) V3 (t) = 3 sin (1000 + + 53°)-4c05 (1000 t -17°) v AAA AAAAAarrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- Tutorial - Design of Common-Gate (CG) Amplifier Design a common-gate NMOS amplifier with the following parameters: Supply Voltage (VDD): 10 V ⚫Threshold Voltage (Vth): 2 V •Overdrive Voltage (Vov) = VGS-Vth: 1 V • Desired Voltage Gain Av: 10 V/V • Transconductance gm: to be determined •Ensure that the NMOS operates in the saturation region. ⚫ Design Vos to ensure saturation and enough voltage swing. C₁ Vin +VDD RD C₂ V out Rs WI RLarrow_forwardNEED HANDWRITTEN SOLUTION DO NOT USE CHATGPT OR AIarrow_forwardDetermine the response y(n), n≥0 of the system described by the second order difference equation: y(n)-4y(n-1)+4y(n-2)=x(n)-x(n-1) when the input is x(n)=(−1)" u(n) and the initial conditions are y(-1)=y(-2)=0.arrow_forward
- Consider a Continuous- time LTI System described by y' (+)+ nycH) = x() find yet for a) x(+)o ē+4(H) b) X(+) = u(+). c) X(H= 5(+)arrow_forwardFind the Thevenin equivalent representation of the circuit given to the left of the nodes a and b. Find Vth and Rth and draw the equivalent Thevenin circuit. For Rth use a 1 volt test source as your method.arrow_forwardR(s) + E(s) 100(s+2)(s+6) s(s+3)(s+4) C(s)arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,