bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.64E

Calculate the boiling and freezing points of water solutions that are 1.50 M in the following solutes:

a. KCl , a strong electrolyte

b. glycerol, a nonelectrolyte

c. ( NH 4 ) 2 SO 4 , strong electrolyte

d. Al ( NO 3 ) 3 , a strong electrolyte

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

The boiling and freezing points of 1.50M water solution of KCl, a strong electrolyte are to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.64E

The boiling and freezing points of 1.50M water solution of KCl, a strong electrolyte are 101.6°C and 5.58°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since KCl is a strong electrolyte it will completely dissociate in the solution and the value of n for KCl is 2. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=2×0.52°C/M×1.50M=1.56°C

The boiling point of water solution can be calculated by adding value the of ΔTb to normal boiling point of water as shown below.

Boiling point=100°C+1.56°C=101.56°C101.6°C

Thus, the boiling point of water solution is 101.6°C.

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since KCl is a strong electrolyte it will completely dissociate in the solution and the value of n for KCl is 2. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=2×1.86°C/M×1.50M=5.58°C

The freezing point of water solution can be calculated by subtracting the value of ΔTf from freezing point of water as shown below.

Freezing point=0°C5.58°C=5.58°C

Thus, the freezing point of the water solution is 5.58°C.

Conclusion

The boiling and freezing points of 1.50M water solution of KCl, a strong electrolyte are 101.6°C and 5.58°C respectively.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

The boiling and freezing points of 1.50M water solution of glycerol, a nonelectrolyte is to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.64E

The boiling and freezing points of 1.50M water solution of glycerol, a nonelectrolyte are 100.78°C and 2.79°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since glycerol is a nonelectrolyte it will not dissociate in the solution and the value of n for ethylene glycol is 1. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=1×0.52°C/M×1.50M=0.78°C

The boiling point of water solution can be calculated by adding value of ΔTb to the normal boiling point of water as shown below.

Boiling point=100°C+0.78°C=100.78°C

Thus, the boiling point of water solution is 100.78°C.

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since glyerol is a nonelectrolyte it will not dissociate in the solution and the value of n for glycerol is 1. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=1×1.86°C/M×1.50M=2.79°C

The freezing point of water solution can be calculated by subtracting the value of ΔTf from normal freezing point of water as given below.

Freezing point=0°C2.79°C=2.79°C

Thus, the freezing point of water solution is 2.79°C.

Conclusion

The boiling and freezing points of 1.50M water solution of glycerol, a nonelectrolyte are 100.78°C and 2.79°C respectively.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

The boiling and freezing points of 1.50M water solution of (NH4)2SO4, a strong electrolyte are to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.64E

The boiling and freezing points of 1.50M water solution of (NH4)2SO4, strong electrolyte are 102.34°C and 8.37°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since (NH4)2SO4 is a strong electrolyte it will dissociate in the solution completely and the value of n for (NH4)2SO4 is 3. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=3×0.52°C/M×1.50M=2.34°C

The boiling point of water solution can be calculated by adding value of ΔTb to the normal boing point of water as shown below.

Boiling point=100°C+2.34°C=102.34°C

Thus, the boiling point of water solution is 102.34°C.

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since (NH4)2SO4 is a strong electrolyte it will dissociate in the solution completely and the value of n for (NH4)2SO4 is 3. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=3×1.86°C/M×1.50M=8.37°C

The freezing point of water solution can be calculated by subtracting the value of ΔTf from normal freezing point of water as given below.

Freezing point=0°C8.37°C=8.37°C

Thus, the freezing point of water solution is 8.37°C.

Conclusion

The boiling and freezing points of 1.50M water solution of (NH4)2SO4, strong electrolyte are 102.34°C and 8.37°C respectively.

Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation:

The boiling and freezing points of 1.50M water solution of Al(NO3)3, a strong electrolyte are to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.64E

The boiling and freezing points of 1.50M water solution of Al(NO3)3, a strong electrolyte are 103.12°C and 11.16°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since Al(NO3)3 is a strong electrolyte it will dissociate in the solution completely and the value of n for Al(NO3)3 is 4. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=4×0.52°C/M×1.50M=3.12°C

The boiling point of water solution can be calculated by adding value of ΔTb to the normal boing point of water as shown below.

Boiling point=100°C+3.12°C=103.12°C

Thus, the boiling point of water solution is 103.12°C.

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since Al(NO3)3 is a strong electrolyte it will dissociate in the solution completely and the value of n for Al(NO3)3 is 4. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=4×1.86°C/M×1.50M=11.16°C

The freezing point of water solution can be calculated by subtracting the value of ΔTf from normal freezing point of water as given below.

Freezing point=0°C11.16°C=11.16°C

Thus, the freezing point of water solution is 11.16°C.

Conclusion

The boiling and freezing points of 1.50M water solution of Al(NO3)3, a strong electrolyte are 103.12°C and 11.16°C respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 7 Solutions

Bundle: Chemistry for Today: General, Organic, and Biochemistry, Loose-Leaf Version, 9th + LMS Integrated OWLv2, 4 terms (24 months) Printed Access Card

Ch. 7 - Prob. 7.11ECh. 7 - Classify each of the following solutes into the...Ch. 7 - Prob. 7.13ECh. 7 - Prob. 7.14ECh. 7 - Prob. 7.15ECh. 7 - Prob. 7.16ECh. 7 - Prob. 7.17ECh. 7 - Prob. 7.18ECh. 7 - Prob. 7.19ECh. 7 - Prob. 7.20ECh. 7 - Prob. 7.21ECh. 7 - Prob. 7.22ECh. 7 - Calculate the molarity of the following solutions:...Ch. 7 - Prob. 7.24ECh. 7 - Prob. 7.25ECh. 7 - Calculate: a. How many grams of solid would be...Ch. 7 - Prob. 7.27ECh. 7 - Prob. 7.28ECh. 7 - Calculate the concentration in (w/w) of the...Ch. 7 - Calculate the concentration in (w/w) of the...Ch. 7 - Prob. 7.31ECh. 7 - Calculate the concentration in (w/w) of the...Ch. 7 - Prob. 7.33ECh. 7 - Calculate the concentration in (v/v) of the...Ch. 7 - Calculate the concentration in (v/v) of the...Ch. 7 - Consider the blood volume of an adult to be 5.0L....Ch. 7 - Prob. 7.37ECh. 7 - Calculate the concentration in (w/v) of the...Ch. 7 - Calculate the concentration in (w/v) of the...Ch. 7 - Prob. 7.40ECh. 7 - Prob. 7.41ECh. 7 - Prob. 7.42ECh. 7 - Explain how you would prepare the following...Ch. 7 - Prob. 7.44ECh. 7 - Prob. 7.45ECh. 7 - Calculate the following: a. The number of grams of...Ch. 7 - Prob. 7.47ECh. 7 - Explain how you would prepare the following dilute...Ch. 7 - Prob. 7.49ECh. 7 - Prob. 7.50ECh. 7 - Prob. 7.51ECh. 7 - How many grams of solid Na2CO3 will react with...Ch. 7 - Prob. 7.53ECh. 7 - Prob. 7.54ECh. 7 - Prob. 7.55ECh. 7 - Prob. 7.56ECh. 7 - How many milliliters of 0.124MNaOH solution will...Ch. 7 - How many milliliters of 0.124MNaOH solution will...Ch. 7 - How many milliliters of 0.115MNaOH solution will...Ch. 7 - Stomach acid is essentially 0.10MHCl. An active...Ch. 7 - Prob. 7.61ECh. 7 - Prob. 7.62ECh. 7 - Prob. 7.63ECh. 7 - Calculate the boiling and freezing points of water...Ch. 7 - Calculate the boiling and freezing points of water...Ch. 7 - Prob. 7.66ECh. 7 - Prob. 7.67ECh. 7 - Prob. 7.68ECh. 7 - Calculate the osmolarity for the following...Ch. 7 - Prob. 7.70ECh. 7 - Calculate the osmotic pressure of a 0.125M...Ch. 7 - Prob. 7.72ECh. 7 - Prob. 7.73ECh. 7 - Calculate the osmotic pressure of a solution that...Ch. 7 - Prob. 7.75ECh. 7 - Prob. 7.77ECh. 7 - Prob. 7.78ECh. 7 - Prob. 7.79ECh. 7 - Suppose an osmotic membrane separates a 5.00 sugar...Ch. 7 - Prob. 7.81ECh. 7 - Prob. 7.82ECh. 7 - Suppose you have a bag made of a membrane like...Ch. 7 - Prob. 7.84ECh. 7 - Prob. 7.85ECh. 7 - Prob. 7.86ECh. 7 - Prob. 7.87ECh. 7 - Prob. 7.88ECh. 7 - Prob. 7.89ECh. 7 - When a patient has blood cleansed by hemodialysis,...Ch. 7 - Prob. 7.91ECh. 7 - Prob. 7.92ECh. 7 - Prob. 7.93ECh. 7 - Prob. 7.94ECh. 7 - Prob. 7.95ECh. 7 - Strips of fresh meat can be preserved by drying....Ch. 7 - If a salt is added to water, which of the...Ch. 7 - Prob. 7.98ECh. 7 - Prob. 7.99ECh. 7 - Prob. 7.100ECh. 7 - Which one of the following compounds is a...Ch. 7 - Prob. 7.102ECh. 7 - Prob. 7.103ECh. 7 - Prob. 7.104ECh. 7 - Prob. 7.105ECh. 7 - Prob. 7.106ECh. 7 - Prob. 7.107ECh. 7 - Prob. 7.108ECh. 7 - Prob. 7.109ECh. 7 - Prob. 7.110ECh. 7 - In a dilute solution of sodium chloride in water,...Ch. 7 - A salt solution has a molarity of 1.5M. How many...Ch. 7 - Prob. 7.113ECh. 7 - Prob. 7.114ECh. 7 - Prob. 7.115ECh. 7 - Prob. 7.116ECh. 7 - Prob. 7.117ECh. 7 - Prob. 7.118ECh. 7 - Prob. 7.119ECh. 7 - Prob. 7.120ECh. 7 - Prob. 7.121ECh. 7 - Prob. 7.122E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY