(a)
Interpretation:
The molarity of the solution prepared by diluting
Concept introduction:
A solution is prepared by mixing proper amount of solute and solvent. The expression that is used to calculate the amount of dilution of solutions is shown below.
Where,
•
•
•
•
(b)
Interpretation:
The molarity of the solution prepared by diluting
Concept introduction:
A solution is prepared by mixing proper amount of solute and solvent. The expression that is used to calculate the amount of dilution of solutions is shown below.
Where,
•
•
•
•
(c)
Interpretation:
The molarity of the solution prepared by diluting
Concept introduction:
A solution is prepared by mixing proper amount of solute and solvent. The expression that is used to calculate the amount of dilution of solutions is shown below.
Where,
•
•
•
•
(d)
Interpretation:
The molarity of the solution prepared by diluting
Concept introduction:
A solution is prepared by mixing proper amount of solute and solvent. The expression that is used to calculate the amount of dilution of solutions is shown below.
Where,
•
•
•
•
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Bundle: Chemistry for Today: General, Organic, and Biochemistry, Loose-Leaf Version, 9th + LMS Integrated OWLv2, 4 terms (24 months) Printed Access Card
- 34. For each of the following solutions, the number of moles of solute is given, followed by the total volume of the solution prepared. Calculate the molarity of each solution. a. 0.754 mol KNO; 225 mL b. 0.0105 in of CaCl; 10.2 mL c. 3.15 mol NaCl; 5.00 L d. 0.499 mol NaBr; 100. mLarrow_forward3.65 Determine the final molarity for the following dilutions. (a) 24.5 mL of 3.0 M solution diluted to 100.0 mL (b) 15.3 mL of 4.22 M solution diluted to 1.00 L (c) 1.45 mL of 0.034 M solution diluted to 10.0 mL (d) 2.35 L of 12.5 M solution diluted to 100.0 Larrow_forwardCalcium carbonate, CaCO3, can be obtained in a very pure state. Standard solutions of calcium ion are usually prepared by dissolving calcium carbonate in acid. What mass of CaCO3 should be taken to prepare 500. mL of 0.0200 M calcium ion solution?arrow_forward
- What is the molarity of the diluted solution when each of the following solutions is diluted to the given final volume? (a) 1.00 L of a 0.250-M solution of Fe( NO3)3 is diluted to a final volume of 2.00 L (b) 0.5000 L of a 0.1222-M solution of C3H7OH is diluted to a final volume of 1.250 L (c) 2.35 L of a 0.350-M solution of H3PO is diluted to a final volume of 4.00 L (d) 22.50 mL of a 0.025-M solution of C12H22O11 is diluted to 100.0 mLarrow_forwardA certain grade of steel is made by dissolving 5.0 g of carbon and 1.5 g of nickel per 100. g of molten iron. What is the mass percent of each component in the finished steel?arrow_forward3.64 How many grams of solute are present in each of these solutions? (a) 37.2 mL ofO.471 M HBr (b) 113.0 L of 1.43 M Na2CO3 (c) 212 mL of 6.8 M CH3COOH (d) 1.3 × 10-4 L of 1.03 M H2S03arrow_forward
- Without consulting your textbook, list and explain the main postulates of the kinetic molecular theory for gases. How do these postulates help us account for the following bulk properties of a gas: the pressure of the gas and why the pressure of the gas increases with increased temperature; the fact that a gas tills its entire container; and the fact that the volume of a given sample of gas increases as its temperature is increased.arrow_forwardCalculate the number of moles and the mass of the solute in each of the following solutions: (a) 2.00 L of 18.5MH2SO4, concentrated sulfuric acid (b) 100.0 mL of 3.8105MNaCN, the minimum lethal concentration of sodium cyanide in blood serum (c) 5.50 L of 13.3 MH2CO, the formaldehyde used to fix tissue samples (d) 325 mL of 1.8106MFeSO4, the minimum concentration of iron sulfate detectable by taste in drinking waterarrow_forwardWhat is the molarity of a glucose (C6H12O6) solution prepared from 55.0 mL of a 1.0 M solution that is diluted with water to a final volume of 2.0 L?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER