ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
2nd Edition
ISBN: 9780393666144
Author: KARTY
Publisher: NORTON
Question
Book Icon
Chapter 7, Problem 7.35P
Interpretation Introduction

(a)

Interpretation:

The curved arrow notation for the elimination of H+ from the carbocation shown is to be drawn along with the product.

Concept introduction:

Curved arrows are used to represent the movement of electrons in a reaction mechanism. The arrow starts on an electron-rich atom or an electron-rich region such as a pi bond. It ends on an electron poor atom when the movement results in the formation of a new sigma bond. If the result is the formation of a pi bond, the arrow ends in the region between the two atoms that form the bond.

A carbocation is a positively charged carbon atom that is electron-poor, two electrons short of an octet. A nearby bond or a lone pair on a nearby atom acts as an electron-rich region and can transfer the pair of electrons to the electron-poor atom. This can result in the formation of a more stable neutral species, accompanied by the loss of an electrophile. The electrophile may be a proton or another cationic species and is extracted by any base that may be present.

Interpretation Introduction

(b)

Interpretation:

The curved arrow notation for the elimination of SO3H+ from the carbocation shown is to be drawn along with the product.

Concept introduction:

Curved arrows are used to represent the movement of electrons in a reaction mechanism. The arrow starts on an electron-rich atom or an electron-rich region such as a pi bond. It ends on an electron poor atom when the movement results in the formation of a new sigma bond. If the result is the formation of a pi bond, the arrow ends in the region between the two atoms that form the bond.

A carbocation is a positively charged carbon atom that is electron-poor, two electrons short of an octet. A nearby bond or a lone pair on a nearby atom acts as an electron-rich region and can transfer the pair of electrons to the electron-poor atom. This can result in the formation of a more stable neutral species, accompanied by the loss of an electrophile. The electrophile may be a proton or another cationic species and is extracted by any base that may be present.

Blurred answer
Students have asked these similar questions
Complete the spectroscopy with structure
Complete the spectroscopy with structure
Write the calculate the reaction quotient for the following system, if the partial pressure of all reactantsand products is 0.15 atm: NOCl (g) ⇌ NO (g) + Cl2 (g) H = 20.5 kcal

Chapter 7 Solutions

ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning