ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
2nd Edition
ISBN: 9780393666144
Author: KARTY
Publisher: NORTON
Question
Book Icon
Chapter 7, Problem 7.35P
Interpretation Introduction

(a)

Interpretation:

The curved arrow notation for the elimination of H+ from the carbocation shown is to be drawn along with the product.

Concept introduction:

Curved arrows are used to represent the movement of electrons in a reaction mechanism. The arrow starts on an electron-rich atom or an electron-rich region such as a pi bond. It ends on an electron poor atom when the movement results in the formation of a new sigma bond. If the result is the formation of a pi bond, the arrow ends in the region between the two atoms that form the bond.

A carbocation is a positively charged carbon atom that is electron-poor, two electrons short of an octet. A nearby bond or a lone pair on a nearby atom acts as an electron-rich region and can transfer the pair of electrons to the electron-poor atom. This can result in the formation of a more stable neutral species, accompanied by the loss of an electrophile. The electrophile may be a proton or another cationic species and is extracted by any base that may be present.

Interpretation Introduction

(b)

Interpretation:

The curved arrow notation for the elimination of SO3H+ from the carbocation shown is to be drawn along with the product.

Concept introduction:

Curved arrows are used to represent the movement of electrons in a reaction mechanism. The arrow starts on an electron-rich atom or an electron-rich region such as a pi bond. It ends on an electron poor atom when the movement results in the formation of a new sigma bond. If the result is the formation of a pi bond, the arrow ends in the region between the two atoms that form the bond.

A carbocation is a positively charged carbon atom that is electron-poor, two electrons short of an octet. A nearby bond or a lone pair on a nearby atom acts as an electron-rich region and can transfer the pair of electrons to the electron-poor atom. This can result in the formation of a more stable neutral species, accompanied by the loss of an electrophile. The electrophile may be a proton or another cationic species and is extracted by any base that may be present.

Blurred answer
Students have asked these similar questions
1 N2H4 (l)  + 3 O2(g)  > 2 NO2 (g) + 2 H2O (g) If 75.0 kg of hydrazine are reacted with 75.0 kg of oxygen, which is the limiting reactant?
PQ-10. What is the major product of this reaction? (A) (C) 930 Me HO O=S=O O-8-CF, C 어 Me H+ OH 270 O 0-5-0 O=S=O O-S-CF CF3 2
Predict the major organic product(s) of the following reactions. Include stereochemistry when necessary. Write NR if no reaction, try to explain.

Chapter 7 Solutions

ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning