
Concept explainers
Interpretation:
The retro synthesis analysis for the given compound is to be developed, the reactions are to be written for the synthesis of this compound, the synthetic intermediates show IR absorption that would result from retrosynthetic analyses and its 3-d structure of major product is to be drawn.
Concept Introduction:
▸ Electrophiles are electron deficient species which has positive or partially positive charge. Lewis acids are electrophiles which accept electron pair.
▸ Nucleophiles are electron rich species which has negative or partially negative charge. Lewis bases are nucleophiles which donate electron pair.
▸ Substitution reaction: A reaction in which one of the hydrogens of a hydrocarbon or a functional group is substituted by any other functional group.
▸ Elimination reaction: A reaction in which two substituent groups are detached and a double bond is formed.
▸ Addition reaction: A reaction in which unsaturated bonds are converted to saturated molecules by addition of molecules.
▸ Retrosynthesis: A process by which the reaction used to form target product is deduced by determining the immediate reactant used to produce it and then repeating the step again to determine other precursors.
▸ The molecules which are non-superimposable or not identical with their mirror images are known as chiral molecules.
▸ A pair of two mirror images which are non-identical is known as enantiomers which are optically active.
▸ The objects or molecules which are superimposable with their mirror images are achiral objects or molecules and these objects have a centre of symmetry or plane of symmetry.
▸ The achiral compounds in which plane of symmetry is present internally and consists of chiral centres are known as meso compounds but they are optically inactive.
▸ The stereoisomers which are non-superimposable on each other and not mirror images of each other are known as diastereomers.
▸ Chiral molecules are capable of rotating plane polarized light
▸ The molecules which are superimposable or identical with their mirror images are known as achiral molecules, and achiral molecules are not capable of rotating the plane-polarised light.
▸ The reaction in which hydrogen is added to the compound in the presence of catalyst is known as hydrogenation.
▸ The number of moles of hydrogen absorbed will be equal to the number of double bonds.
▸ Infrared spectroscopy is a simple, instrumental technique, which helps to determine the presence of various
▸ It depends on the interactions of atoms or molecules with the
▸ Sodium amide is a strong base and it helps in the formation of acetylide that can be converted into bigger
▸ Reduction is a process in which hydrogen atoms are added to a compound. Usual reagent used in reduction process is
▸ Chair conformations: It is the most stable conformation, which accurately shows the spatial arrangement of atoms.
▸ Equatorial bonds are parallel to the average plane of the ring, while axial bonds are perpendicular to the average plane of the ring.
▸ The conformation having bonds at the equatorial positions are more stable than those with bonds at the axial position.
▸ On flipping the cyclohexane ring, axial bonds become equatorial bonds and equatorial bonds becomes axial bond.
▸ Bulkier group acquires equatorial positions to form stable conformer due to steric factors.
▸ In double bond or cyclic compounds, if two same functional groups are present on the same side of the double bond or cyclic compound, the given compound can be labeled as cis.
▸ If the two functional groups are present on the different sides of the double bond or cyclic compound, the given compound can be labeled as Trans.
▸ Cis-trans isomerism exists in the compounds in which similar groups are present on the adjacent carbon atoms.

Trending nowThis is a popular solution!

Chapter 7 Solutions
Organic Chemistry, 12e Study Guide/Student Solutions Manual
- Can u show the process as to how to get these?arrow_forwardSketch the expected 'H NMR spectra for the following compound. Label all of the H's in the structure and the corresponding signal for the spectra you sketch. Make sure you include the integration value and the splitting pattern for each signal Indicate how many signals you would expect in the 13C NMRarrow_forwardUse IUPAC naming rules to name the following hydrocarbon compounds: CH2-CH3 | a) CH-CH-CH2-CH-CH-CH3 b) | CH2 CH3 | CH3 CH3 \ / C=C H 1 H CH2-CH3 c) d) CH=C-CH3 e) CH3-CH2-CH2-CH=CH-CH3 f) CH2=CH-CH2-CH=CH-CH3 g) CH3-CH2-C = C-CH2-CH3 h)arrow_forward
- Q5 Name the following : a. b. C. d. e.arrow_forward25. Predict the major product of the following reaction. 1 equivalent of each of the starting materials was used. H₂C CH3 CH3 H3C H3C H3C. CH2 + H3C. heat CH3 CH H.C. CH3 H.C H.C CH3 CH CH3 CH3 A B C Earrow_forwardFind chemical structures based on the below information. a) Chemical formula C6H8O Compound is aromatic plus has two 1H NMR peaks that integrated for 3 each that are singlets (it could have more peaks in the 1H NMR b) Chemical Formula: C6H100 Compounds is conjugated 'H NMR has a signal that integrates for 6 and is a doublet IR spectra has a signal at 1730 cm-1arrow_forward
- Jaslev Propose a synthesis of the following starting from benzene and any other reagents and chemicals. No mechanisms are required. Indicate the condition for each step plus the major product for each step. More than two steps are required. Step 1 Step 2 مہد Brarrow_forwardPart C: The line formula for another branched alkane is shown below. i. In the IUPAC system what is the root or base name of this compound? ii. How many alkyl substituents are attached to the longest chain? iii. Give the IUPAC name for this compound.arrow_forwardPart D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forward
- Part B: The line formula for a branched alkane is shown below. a. What is the molecular formula of this compound? Number of C. Number of H b. How many carbon atoms are in the longest chain? c. How many alkyl substituents are attached to this chain?arrow_forward24. What is the major product for the following reaction? Mg J. H.C CH H,C- Then H₂O OH Br C HO E HO H.C CH H.C- CH₂ CH₂ All of these are possiblearrow_forwardstructures. Explain why the major product(s) are formed over the minor product(s) using the Draw the major and product and the complete mechanism for all products with all resonance mechanism/resonance structures of the major and minor products in your explanation. HONO2 H2SO4arrow_forward
