Concept explainers
Review Question 7.1 Assuming that Earth’s orbit around the Sun is circular, what information do you need to estimate the work done by the Sun on Earth while Earth travels 1000 km? Explain your answer.
The information needed to estimate the work done by the Sun on the Earth while Earth travels
Answer to Problem 1RQ
Solution:
No information is needed because work done by the Sun on the Earth is zero in this case.
Explanation of Solution
Introduction:
Work done by any force is defined as the product of force and the displacement in the direction of the force.
In this question, it is assumed that Earth’s orbit is circular, i.e., Earth’s displacement in the radial direction is zero at every point of the path.
Explanation:
When the orbit is assumed to be circular radius, it is constant at every point of the path, i.e., there is no displacement in the direction of the radius. Since, the Sun is at the center of this circular orbit, so the gravitational force between the Sun and Earth is always towards the center and along the radius.
The equation for the work done is given below.
Here,
In the case of a circular path, the angle between displacement and the force is
When
Conclusion:
Work done by centripetal force in case of circular motion is always zero. In this case, the Earth’s orbit is assumed to be circular, the gravitational force’s direction is always along the radius towards the center, i.e., the Sun. But, displacement along the radius is zero at every point of the path. Hence, the work done is zero.
Want to see more full solutions like this?
Chapter 7 Solutions
College Physics
Additional Science Textbook Solutions
Microbiology: An Introduction
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
Campbell Biology (11th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Answer yes or no to each of the following questions. (a) Can an objectEarth system have kinetic energy and not gravitational potential energy? (b) Can it have gravitational potential energy and not kinetic energy? (c) Can it have both types of energy at the same moment? (d) Can it have neither?arrow_forwardAs a simple pendulum swings back and forth, the forces acting on the suspended object are the force of gravity, the tension in the supporting cord, and air resistance, (a) Which of these forces, if any, does no work on the pendulum? (b) Which of these forces does negative work at all times during the pendulums motion? (c) Describe the work done by the force of gravity while the pendulum is swinging.arrow_forwardExplorers in the jungle find an ancient monument in the shape of a large isosceles triangle as shown in Figure P9.25. The monument is made from tens of thousands of small stone blocks of density 3 800 kg/m3. The monument is 15.7 m high and 64.8 m wide at its base and is everywhere 3.60 m thick from front to back. Before the monument was built many years ago, all the stone blocks lay on the ground. How much work did laborers do on the blocks to put them in position while building the entire monument? Note: The gravitational potential energy of an objectEarth system is given by Ug = MgyCM, where M is the total mass of the object and yCM is the elevation of its center of mass above the chosen reference level.arrow_forward
- . In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forwardA particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forwardA shopper in a supermarket pushes a cart with a force of 35.0 N directed at an angle of 25.0 below the horizontal. The force is just sufficient to balance various friction forces, so the cart moves at constant speed. (a) Find the work done by the shopper on the cart as she moves down a 50.0-m-long aisle. (b) The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the friction force doesnt change, would the shoppers applied force be larger, smaller, or the same? (c) What about the work done on the cart by the shopper?arrow_forward
- Jonathan is riding a bicycle and encounters a hill of height 7.30 m. At the base of the hill, he is traveling at 6.00 m/s. When he reaches the top of the hill, he is traveling at 1.00 m/s. Jonathan and his bicycle together have a mass of 85.0 kg. Ignore friction in the bicycle mechanism and between the bicycle tires and the road. (a) What is the total external work done on the system of Jonathan and the bicycle between the time he starts up the hill and the time he reaches the top? (b) What is the change in potential energy stored in Jonathans body during this process? (c) How much work does Jonathan do on the bicycle pedals within the JonathanbicycleEarth system during this process?arrow_forwarda shopper in a supermarket pushes a cart with a force of 35 N directed at an angle of 25 below the horizontal. The force is just sufficient to overcome various frictional forces, so the cart moves at constant speed, (a) Find the work done by the shopper as she moves down a 50.0-m length aisle, (b) What is the net work done on the cart? Why? (c) The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesnt change, would the shoppers applied force be larger, smaller, or the same? What about the work done on the cart by the shopper?arrow_forwardReview. You can think of the workkinetic energy theorem as a second theory of motion, parallel to Newtons laws in describing how outside influences affect the motion of an object. In this problem, solve parts (a), (b), and (c) separately from parts (d) and (e) so you can compare the predictions of the two theories. A 15.0-g bullet is accelerated from rest to a speed of 780 m/s in a rifle barrel of length 72.0 cm. (a) Find the kinetic energy of the bullet as it leaves the barrel. (b) Use the workkinetic energy theorem to find the net work that is done on the bullet. (c) Use your result to part (b) to find the magnitude of the average net force that acted on the bullet while it was in the barrel. (d) Now model the bullet as a particle under constant acceleration. Find the constant acceleration of a bullet that starts from rest and gains a speed of 780 m/s over a distance of 72.0 cm. (e) Modeling the bullet as a particle under a net force, find the net force that acted on it during its acceleration. (f) What conclusion can you draw from comparing your results of parts (c) and (e)?arrow_forward
- A nonconstant force is exerted on a particle as it moves in the positive direction along the x axis. Figure P9.26 shows a graph of this force Fx versus the particles position x. Find the work done by this force on the particle as the particle moves as follows. a. From xi = 0 to xf = 10.0 m b. From xi = 10.0 to xf = 20.0 m c. From xi = 0 to xf = 20.0 m FIGURE P9.26 Problems 26 and 27.arrow_forward(a) Suppose a constant force acts on an object. The force does not vary with time or with the position or the velocity of the object. Start with the general definition for work done by a force W=ifFdr and show that the force is conservative, (b) As a special case, suppose the force F =(3i + 4j)N acts on a particle that moves from O to in Figure P7.43. Calculate the work done by F on the particle as it moves along each one of the three paths shown in the figure and show that the work done along the three paths identical.arrow_forwardA jack-in-the-box is actually a system that consists of an object attached to the top of a vertical spring (Fig. P8.50). a. Sketch the energy graph for the potential energy and the total energy of the springobject system as a function of compression distance x from x = xmax to x = 0, where xmax is the maximum amount of compression of the spring. Ignore the change in gravitational potential energy. b. Sketch the kinetic energy of the system between these points the two distances in part (a)on the same graph (using a different color). FIGURE P8.50 Problems 50 and 79arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning