Space Shuttle launch The mass of the Space Shuttle at launch was about 2 .1 × 10 6 kg . Much of this mass was the fuel used to move the orbiter, which carried the astronauts and various items in the shuttle’s payload. The Space Shuttle generally traveled from 3 .2 × 10 5 m ( 200 mi ) to6 .2 × 10 5 m (385 mi) above Earth’s surface. The shuttle’s two solid fuel boosters (the cylinders on the sides of the shuttle) provided 71.4% of the thrust during liftoff and the first stage of ascent before being released from the shuttle 132 s after launch at 48,000 m above sea level. The boosters continued moving up in free fall to an altitude of approximately 70,000 m and then fell toward the ocean to be recovered 230 km from the launch site. The shuttle’s five engines together provided 3 .46 × 10 7 N of thrust during liftoff. What answer below is closest to the speed of the shuttle and boosters when they were released? Assume that the free-fall gravitational acceleration at this elevation is about 9 .6 m/s 2 down. a. 100 m/s b. 300 m/s c. 600 m/s d. 1000 m/s
Space Shuttle launch The mass of the Space Shuttle at launch was about 2 .1 × 10 6 kg . Much of this mass was the fuel used to move the orbiter, which carried the astronauts and various items in the shuttle’s payload. The Space Shuttle generally traveled from 3 .2 × 10 5 m ( 200 mi ) to6 .2 × 10 5 m (385 mi) above Earth’s surface. The shuttle’s two solid fuel boosters (the cylinders on the sides of the shuttle) provided 71.4% of the thrust during liftoff and the first stage of ascent before being released from the shuttle 132 s after launch at 48,000 m above sea level. The boosters continued moving up in free fall to an altitude of approximately 70,000 m and then fell toward the ocean to be recovered 230 km from the launch site. The shuttle’s five engines together provided 3 .46 × 10 7 N of thrust during liftoff. What answer below is closest to the speed of the shuttle and boosters when they were released? Assume that the free-fall gravitational acceleration at this elevation is about 9 .6 m/s 2 down. a. 100 m/s b. 300 m/s c. 600 m/s d. 1000 m/s
Space Shuttle launch The mass of the Space Shuttle at launch was about
2
.1
×
10
6
kg
. Much of this mass was the fuel used to move the orbiter, which carried the astronauts and various items in the shuttle’s payload. The Space Shuttle generally traveled from
3
.2
×
10
5
m
(
200 mi
)
to6
.2
×
10
5
m
(385 mi) above Earth’s surface. The shuttle’s two solid fuel boosters (the cylinders on the sides of the shuttle) provided 71.4% of the thrust during liftoff and the first stage of ascent before being released from the shuttle 132 s after launch at 48,000 m above sea level. The boosters continued moving up in free fall to an altitude of approximately 70,000 m and then fell toward the ocean to be recovered 230 km from the launch site. The shuttle’s five engines together provided
3
.46
×
10
7
N
of thrust during liftoff.
What answer below is closest to the speed of the shuttle and boosters when they were released? Assume that the free-fall gravitational acceleration at this elevation is about
9
.6 m/s
2
down.
Identical rays of light enter three transparent blocks composed of
different materials. Light slows down upon entering the blocks.
For single-slit diffraction, calculate the first three values of (the total phase difference between rays from each
edge of the slit) that produce subsidiary maxima by a) using the phasor model, b) setting dr = 0, where I is
given by,
I
=
Io (sin (10) ².
2
A capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H .
(D)What is the charge on the capacitor 0.0235 s after the connection to the inductor is made? Interpret the sign of your answer. (e) At the time given in part (d), what is the current in the inductor? Interpret the sign of your answer. (f) Atthe time given in part (d), how much electrical energy is stored in the capacitor and how much is stored in the inductor?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.