** You are investigating a newly discovered particle X that has an unknown mass M and moves with a constant but unknown speed u . In your experiments you observe collisions between particle X and different test particles with known masses m that are initially at rest. You let the particles collide head-on and stick together, and you measure the speed v of the combined-particle object. From other observations you know that in all experiments the objects move along the same straight line before and after the collision. Your data are shown in the table at right. Note that the masses are expressed in units of reference mass m 0 and the speed in units of reference speed v 0 . m ( m 0 ) v ( v 0 ) 2.0 0.55 4.0 0.45 6.0 0.35 8.0 0.30 10.0 0.25 (a) Derive an expression for v in terms of M , m , and u . Indicate any assumptions that you made. (b) Determine M and u using the data in the table. (Hint: Rearrange the expression that you derived in (a) to obtain a new equation with the linear dependence on m .)
** You are investigating a newly discovered particle X that has an unknown mass M and moves with a constant but unknown speed u . In your experiments you observe collisions between particle X and different test particles with known masses m that are initially at rest. You let the particles collide head-on and stick together, and you measure the speed v of the combined-particle object. From other observations you know that in all experiments the objects move along the same straight line before and after the collision. Your data are shown in the table at right. Note that the masses are expressed in units of reference mass m 0 and the speed in units of reference speed v 0 . m ( m 0 ) v ( v 0 ) 2.0 0.55 4.0 0.45 6.0 0.35 8.0 0.30 10.0 0.25 (a) Derive an expression for v in terms of M , m , and u . Indicate any assumptions that you made. (b) Determine M and u using the data in the table. (Hint: Rearrange the expression that you derived in (a) to obtain a new equation with the linear dependence on m .)
** You are investigating a newly discovered particle X that has an unknown mass M and moves with a constant but unknown speed u. In your experiments you observe collisions between particle X and different test particles with known masses m that are initially at rest. You let the particles collide head-on and stick together, and you measure the speed v of the combined-particle object. From other observations you know that in all experiments the objects move along the same straight line before and after the collision. Your data are shown in the table at right. Note that the masses are expressed in units of reference mass
m
0
and the speed in units of reference speed
v
0
.
m (m0)
v(v0)
2.0
0.55
4.0
0.45
6.0
0.35
8.0
0.30
10.0
0.25
(a) Derive an expression for v in terms of M, m, and u. Indicate any assumptions that you made. (b) Determine M and u using the data in the table. (Hint: Rearrange the expression that you derived in (a) to obtain a new equation with the linear dependence on m.)
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0
s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?
a (m/s²)
as
-2
0
2
t(s)
4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Westros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.