** You are investigating a newly discovered particle X that has an unknown mass M and moves with a constant but unknown speed u . In your experiments you observe collisions between particle X and different test particles with known masses m that are initially at rest. You let the particles collide head-on and stick together, and you measure the speed v of the combined-particle object. From other observations you know that in all experiments the objects move along the same straight line before and after the collision. Your data are shown in the table at right. Note that the masses are expressed in units of reference mass m 0 and the speed in units of reference speed v 0 . m ( m 0 ) v ( v 0 ) 2.0 0.55 4.0 0.45 6.0 0.35 8.0 0.30 10.0 0.25 (a) Derive an expression for v in terms of M , m , and u . Indicate any assumptions that you made. (b) Determine M and u using the data in the table. (Hint: Rearrange the expression that you derived in (a) to obtain a new equation with the linear dependence on m .)
** You are investigating a newly discovered particle X that has an unknown mass M and moves with a constant but unknown speed u . In your experiments you observe collisions between particle X and different test particles with known masses m that are initially at rest. You let the particles collide head-on and stick together, and you measure the speed v of the combined-particle object. From other observations you know that in all experiments the objects move along the same straight line before and after the collision. Your data are shown in the table at right. Note that the masses are expressed in units of reference mass m 0 and the speed in units of reference speed v 0 . m ( m 0 ) v ( v 0 ) 2.0 0.55 4.0 0.45 6.0 0.35 8.0 0.30 10.0 0.25 (a) Derive an expression for v in terms of M , m , and u . Indicate any assumptions that you made. (b) Determine M and u using the data in the table. (Hint: Rearrange the expression that you derived in (a) to obtain a new equation with the linear dependence on m .)
** You are investigating a newly discovered particle X that has an unknown mass M and moves with a constant but unknown speed u. In your experiments you observe collisions between particle X and different test particles with known masses m that are initially at rest. You let the particles collide head-on and stick together, and you measure the speed v of the combined-particle object. From other observations you know that in all experiments the objects move along the same straight line before and after the collision. Your data are shown in the table at right. Note that the masses are expressed in units of reference mass
m
0
and the speed in units of reference speed
v
0
.
m (m0)
v(v0)
2.0
0.55
4.0
0.45
6.0
0.35
8.0
0.30
10.0
0.25
(a) Derive an expression for v in terms of M, m, and u. Indicate any assumptions that you made. (b) Determine M and u using the data in the table. (Hint: Rearrange the expression that you derived in (a) to obtain a new equation with the linear dependence on m.)
You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.