College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 31P
To determine
The state of the cart, that is, whether it remains stationary or starts moving when a ball falls vertically on the incline, which is at rest. The ball is covered with the hook side of the Velcro and the incline, with the loop side of the Velcro, due to which, the ball sticks to the incline. Also, represent the process with impulse-momentum bar charts.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
AMPS
VOLTS
OHMS
5) 50 A
110 V
6) .08 A
39 V
7) 0.5 A
60
8) 2.5 A
110 V
The drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has
an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a
magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made
between the electric field with surface (2) is 30.0°.
Solve in Nm²/C
1
Ө
Surface 2
Surface 1
PROBLEM 5
What is the magnitude and direction of the resultant
force acting on the connection support shown here?
F₁ = 700 lbs
F2 = 250 lbs
70°
60°
F3 = 700 lbs
45°
F4 = 300 lbs
40°
Fs = 800 lbs
18°
Free Body Diagram
F₁ = 700 lbs
70°
250 lbs
60°
F3=
= 700 lbs
45°
F₁ = 300 lbs
40°
=
Fs 800 lbs
18°
Chapter 6 Solutions
College Physics
Ch. 6 - Review Question 6.1 When you burn a log in a fire...Ch. 6 - Review Question 6.2 Ryan says, “Based on the...Ch. 6 - Review Question 6.3 An apple is falling from a...Ch. 6 - Review Question 6.4 If in solving the problem in...Ch. 6 - Review Question 6.5 As the bullet enters the block...Ch. 6 - Review Question 6.6 The following equation is a...Ch. 6 - Review Question 6.7 Object A, moving in the...Ch. 6 - The gravitational force that Earth exerts on an...Ch. 6 - A bullet fired at a door makes a hole in the door...Ch. 6 - How would you convince somebody that the momentum...
Ch. 6 - 4. A wagon full of medicine balls is rolling along...Ch. 6 - 5. When can you apply the idea that momentum is...Ch. 6 - 6. Choose an example in which the momentum of a...Ch. 6 - Figure Q6.7 shows the velocity-versus-time graphs...Ch. 6 - Which is a safer car bumper in a collision: one...Ch. 6 - 9. Why does an inflated balloon shoot across a...Ch. 6 - In which situation does the momentum of a tennis...Ch. 6 - 11. A toy car with very low friction wheels and...Ch. 6 - You hold a clay ball above a scale and then drop...Ch. 6 - 13. You hold a rubber ball above a scale and then...Ch. 6 - 14 Two battery-powered fan carts are resting on a...Ch. 6 - 15. According to a report on traumatic brain...Ch. 6 - 16. Jim says that momentum is not a conserved...Ch. 6 - Say five important things about momentum (for...Ch. 6 - Three people are observing the same car. One...Ch. 6 - When would a ball hitting a wall have a greater...Ch. 6 - 20. In the previous question, in which case does...Ch. 6 - 21. Explain the difference between the concepts of...Ch. 6 - Why do you believe that momentum is a conserved...Ch. 6 - A heavy bar falls straight down onto the bed of a...Ch. 6 - Construct impulse-momentum bar charts to represent...Ch. 6 - A person moving on Rollerblades throws a medicine...Ch. 6 - A small ball of mass m rolls at a constant speed v...Ch. 6 - 1. You and a friend are playing tennis. (a) What...Ch. 6 - 2. You are hitting a tennis ball against a wall....Ch. 6 - A ball of mass m and speed v travels horizontally,...Ch. 6 - Figure P6.4 shows the velocity-versus-time graph...Ch. 6 - 5. A 1300-kg car is traveling at a speed of 10 m/s...Ch. 6 - * The rules of tennis specify that the 0.057-kg...Ch. 6 - * A cart of mass m moving right at speed v with...Ch. 6 - 8. * A cart of mass m moving right collides with...Ch. 6 - ESTEstimate your momentum when you are walking at...Ch. 6 - 10. A 100-g apple is falling from a tree. What is...Ch. 6 - * The same 100-g apple is falling from the tree....Ch. 6 - 12. Why does Earth exert the same impulse during...Ch. 6 - 13. * Van hits concrete support In a crash test, a...Ch. 6 - BIO Force exerted by heart on blood About 80 g of...Ch. 6 - 15. The train tracks on which a train travels...Ch. 6 - 16. ** EST Your friend is catching a falling...Ch. 6 - 17 BIO Traumatic brain injury According to a...Ch. 6 - * A 65-kg astronaut pushes against the inside back...Ch. 6 - 19. * You decide to use your garden hose to wash...Ch. 6 - 20. * An egg rolls off a kitchen counter and...Ch. 6 - 21. ** Proportional reasoning During a collision...Ch. 6 - (a) What force is required to stop a 1500-kg car...Ch. 6 - 23. ** EST You drop a 78-g ball vertically onto a...Ch. 6 - * Air bag force on head The graph in Figure P6.24...Ch. 6 - 25. * Equation Jeopardy 1 Invent a problem for...Ch. 6 - * Equation Jeopardy 2 Invent a problem for which...Ch. 6 - * Two carts (100 g and 150 g) on an air track are...Ch. 6 - * A tennis ball of mass m hits a wall at speed v...Ch. 6 - 29. * A tennis ball traveling at a speed of v...Ch. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - * You hold a beach ball above your head and then...Ch. 6 - 33. * A basketball player drops a 0.60-kg...Ch. 6 - * Bar chart Jeopardy Invent a problem for each of...Ch. 6 - * A baseball bat contacts a 0.145-kg baseball for...Ch. 6 - A cannon mounted on the back of a ship fires a...Ch. 6 - A 10-kg sled carrying a 30-kg child glides on a...Ch. 6 - 38. A 10,000-kg coal car on the Great Northern...Ch. 6 - * Avoiding chest injury A person in a car during a...Ch. 6 - * Bruising apples An apple bruises if a force...Ch. 6 - * Fast tennis serve The fastest server in womens...Ch. 6 - 42. * You are in an elevator whose cable has just...Ch. 6 - ** You jump from the window of a burning hotel and...Ch. 6 - * After a 70-kg person steps from a boat onto the...Ch. 6 - 45. * BIO Leg injuries during car collisions...Ch. 6 - 46. * BIO Bone fracture The zygomatic bone in the...Ch. 6 - 47. ** You are investigating a newly discovered...Ch. 6 - 48. * An impulse of stops your head during a car...Ch. 6 - A cart is moving on a horizontal track when a...Ch. 6 - 50. * A cart is moving on a horizontal track. A...Ch. 6 - 51. Your friend shoots an 80-g arrow through a...Ch. 6 - 52. * BIO EST Cuttlefish use jet propulsion to...Ch. 6 - * BIO Potassium decay in body tissue Certain...Ch. 6 - 54. Drifting space mechanic An astronaut with a...Ch. 6 - Prob. 55PCh. 6 - 56. Rocket stages A 5000-kg rocket ejects a...Ch. 6 - 57. * A rocket has just ejected fuel. With the...Ch. 6 - 58. * Car collision A 1180-kg car traveling south...Ch. 6 - 59. * Ice skaters collide While ice skating, you...Ch. 6 - 1015-kg meteorite traveling at about 10 km/s...Ch. 6 - 61. * Three friends play beach volleyball. The...Ch. 6 - 62. ** Two forces exert impulses on a hockey puck,...Ch. 6 - 64. * A cart of mass m traveling in the negative...Ch. 6 - 65. ** Two cars of unequal mass moving at the same...Ch. 6 - 66. ** Restraining force during collision A...Ch. 6 - * EST A carpenter hammers a nail using a 0.80-kg...Ch. 6 - 68. ** A 0.020-kg bullet traveling at a speed of...Ch. 6 - 69. * Two identical lightweight arms are mounted...Ch. 6 - * In a first experiment, a 30-g clay ball is shot...Ch. 6 - 71. ** EST A record rainstorm produced 304.8 mm...Ch. 6 - 72. * While dangling a hairdryer by its cord, as...Ch. 6 - 73. ** While dangling a hairdryer by its cord, as...Ch. 6 - Prob. 74GPCh. 6 - 75. * A 2045-kg sports utility vehicle hits the...Ch. 6 - 76. ** A car of mass m1 traveling north at a speed...Ch. 6 - ** You have two carts, a force probe connected to...Ch. 6 - BIO Heartbeat detector A prisoner tries to escape...Ch. 6 - BIO Heartbeat detector A prisoner tries to escape...Ch. 6 - BIO Heartbeat detector A prisoner tries to escape...Ch. 6 - BIO Heartbeat detector A prisoner tries to escape...Ch. 6 - BIO Heartbeat detector A prisoner tries to escape...Ch. 6 - Space Shuttle launch The mass of the Space Shuttle...Ch. 6 - Space Shuttle launch The mass of the Space Shuttle...Ch. 6 - Space Shuttle launch The mass of the Space Shuttle...Ch. 6 - Space Shuttle launch The mass of the Space Shuttle...Ch. 6 - Space Shuttle launch The mass of the Space Shuttle...Ch. 6 - Space Shuttle launch The mass of the Space Shuttle...Ch. 6 - Space Shuttle launch The mass of the Space Shuttle...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- PROBLEM 3 Cables A and B are Supporting a 185-lb wooden crate. What is the magnitude of the tension force in each cable? A 20° 35° 185 lbsarrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)arrow_forwardPROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbsarrow_forward
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardSTRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forward
- Hello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forward
- After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill