College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 26P
* A car skids 18 m on a level road while trying to stop before hitting a stopped car in front of it. The two cars barely touch. The coefficient of kinetic friction between the first car and the road is 0.80. A policewoman gives the driver a ticket for exceeding the 35 mi/h speed limit. Can you defend the driver in court? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 95.5 kN car is traveling at 70.9 mph when the driver decides to exit the freeway by going up a ramp. After coasting
3.90 x 10² m along the exit ramp, the car's speed is 28.1 mph and it is h = 13.7 m above the freeway. What is the magnitude of
the average drag force exerted on the car?
Farag
18255
Incorrect
N
*57. D In attempting to pass the puck to a teammate, a hockey player
gives it an initial speed of 1.7 m/s. However, this speed is inadequate to
compensate for the kinetic friction between the puck and the ice. As a
result, the puck travels only one-half the distance between the players
before sliding to a halt. What minimum initial speed should the puck have
been given so that it reached the teammate, assuming that the same force
of kinetic friction acted on the puck everywhere between the two players?
3. During a hockey game on a pond, the defenseman passes a 114-g hockey puck over the ice to
the center, who fails to catch it. The puck is traveling at an initial speed of 6.7 m/s. It stops in
18 m due to the frictional force on it from the ice.
Find the magnitude of the frictional force on the ice.
a.
b. What is the coefficient of kinetic friction between the puck and the ice?
A sign with a mass of 1000.0 kg is suspended from a wall with a cable that is attached to th
at a point 3 m above a horizontal beam that causes the sign to be a distance of 4 m from
wall. See the diagram below. What is the tension in the cable? You may want to draw a
free-body diagram to help you solve the problem.
3 m
4 m
1000.0 kg
Chapter 5 Displacement and Force in Two Dimensions
Chapter 7 Solutions
College Physics
Ch. 7 - Review Question 7.1 Assuming that Earths orbit...Ch. 7 - Review Question 7.2 A system can possess energy...Ch. 7 - Review Question 7.3 When we use the work-energy...Ch. 7 - Review Question 7.4 If the magnitude of the force...Ch. 7 - Review Question 7.5 Why, when friction cannot be...Ch. 7 - Review Question 7.6 What would change in the...Ch. 7 - Review Question 7.7 Imagine that a collision...Ch. 7 - Review Question 7.8 Toyota says that the power of...Ch. 7 - Review Question 7.9 In this section you read that...Ch. 7 - In which of the following is positive work done by...
Ch. 7 - 2. Which answer best represents the system’s...Ch. 7 - An Atwood machine is shown in Figure Q7.3. As the...Ch. 7 - Prob. 4MCQCh. 7 - 5. Three processes are described below. Choose one...Ch. 7 - 6. Choose which statement describes a process in...Ch. 7 - 7. Which example(s) below involve(s) zero physics...Ch. 7 - 8. Estimate the change in gravitational potential...Ch. 7 - What does it mean if object 1 does +10 J of work...Ch. 7 - You pull on a spring, which obeys Hookes law, in...Ch. 7 - The graph in Figure Q7.11 shows the time...Ch. 7 - 12. A 1400-kg car is traveling on a level road at...Ch. 7 - Prob. 13MCQCh. 7 - Two clay balls are moving toward each other. The...Ch. 7 - 15. Is energy a physical phenomenon, a model, or a...Ch. 7 - 16. Your friend thinks that the escape speed...Ch. 7 - Suggest how you can measure the following...Ch. 7 - How can satellites stay in orbit without any jet...Ch. 7 - Why does the Moon have no atmosphere, but Earth...Ch. 7 - What will happen to Earth if our Sun becomes a...Ch. 7 - 21. In the equation , the gravitational potential...Ch. 7 - 22. You push a small cart by exerting a constant...Ch. 7 - 1. Jay fills a wagon with sand (about 20 kg) and...Ch. 7 - 2. You have a 15-kg suitcase and (a) slowly lift...Ch. 7 - * You use a rope to slowly pull a sled and its...Ch. 7 - A rope attached to a truck pulls a 180-kg...Ch. 7 - 5. You lift a 25-kg child 0.80 m, slowly carry him...Ch. 7 - A truck runs into a pile of sand, moving 0.80 m as...Ch. 7 - 7. A 0.50-kg block is placed in a straight gutter...Ch. 7 - s up a smooth incline, which makes an angle with...Ch. 7 - 9. ** It is a windy day. You are moving a 20-kg...Ch. 7 - A 5.0-kg rabbit and a 12-kg Irish setter have the...Ch. 7 - Prob. 11PCh. 7 - * A pickup truck (2268 kg) and a compact car (1100...Ch. 7 - * When does the kinetic energy of a car change...Ch. 7 - * When exiting the highway, a 1100-kg car is...Ch. 7 - Prob. 15PCh. 7 - 16. * Flea jump flea pushes off a surface by...Ch. 7 - * Roller coaster ride A roller coaster car drops a...Ch. 7 - 18. * BIO EST Heart pumps blood The heart does...Ch. 7 - 19. * Wind energy Air circulates across Earth in...Ch. 7 - 20. * BIO Bone break The tibia bone in the lower...Ch. 7 - 21. * BIO EST Climbing Mt. Everest In 1953 Sir...Ch. 7 - 22. A door spring is difficult to stretch. (a)...Ch. 7 - * A moving car has 40,000 J of kinetic energy...Ch. 7 - 24. * The force required to stretch a slingshot by...Ch. 7 - Jim is driving a 2268-kg pickup truck at 20 m/s...Ch. 7 - 26. * A car skids 18 m on a level road while...Ch. 7 - s mass is m. An average friction force of...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - 30. In a popular new hockey game, the players use...Ch. 7 - 31. The top of a descending ski slope is 50 m...Ch. 7 - * If 20% of the gravitational potential energy...Ch. 7 - Prob. 33PCh. 7 - 34. A driver loses control of a car, drives off an...Ch. 7 - * You are pulling a box so it moves at increasing...Ch. 7 - s speed increases from zero to 4.0 m/s in a...Ch. 7 - 37. ** EST Hit by a hailstone A 0.030-kg hailstone...Ch. 7 - 38. * BIO Froghopper jump Froghoppers may be the...Ch. 7 - 39. * Bar chart Jeopardy 1 Describe in words and...Ch. 7 - * Bar chart Jeopardy 2 Describe in words and with...Ch. 7 - 41. * Equation Jeopardy 1 Construct a qualitative...Ch. 7 - * Equation Jeopardy 2 Construct a qualitative...Ch. 7 - Prob. 43PCh. 7 - 44. * Evaluation 2 Your friend provides a solution...Ch. 7 - 45. A crab climbs up a vertical rock with a...Ch. 7 - 46 * Work-energy bar charts for a person going...Ch. 7 - Prob. 47PCh. 7 - * A 1060-kg car moving west at 16 m/s collides...Ch. 7 - * You fire an 80-g arrow so that it is moving at...Ch. 7 - 50. * You fire a 50-g arrow that moves at an...Ch. 7 - * To confirm the results of Problem 7.50, you try...Ch. 7 - 52. * Somebody tells you that Figure P7.52 shows...Ch. 7 - 54. A roofing shingle elevator is lifting a...Ch. 7 - 55. (a) What is the power involved in lifting a...Ch. 7 - * A fire engine must lift 30 kg of water a...Ch. 7 - * BIO Internal energy change while biking You set...Ch. 7 - * Climbing Mt. Mitchell An 82-kg hiker climbs to...Ch. 7 - * BIO EST Sears stair climb The fastest time for...Ch. 7 - * BIO EST Exercising so you can eat ice cream You...Ch. 7 - 61. ** BIO Salmon move upstream In the past,...Ch. 7 - * EST Estimate the maximum horsepower of the...Ch. 7 - Prob. 63PCh. 7 - At what distance from Earth is the gravitational...Ch. 7 -
65. * Possible escape of different air molecule...Ch. 7 - Determine the escape speed for a rocket to leave...Ch. 7 - Determine the escape speed for an object to leave...Ch. 7 - If the Sun were to become a black hole, how much...Ch. 7 - * A satellite moves in elliptical orbit around...Ch. 7 - 70. * Determine the maximum radius Earth's Moon...Ch. 7 - 71. You throw a clay ball vertically upward. The...Ch. 7 - Prob. 72GPCh. 7 - Prob. 73GPCh. 7 - 74 * EST A “gravity force car” is powered by the...Ch. 7 - * Loop the loop You are given a loop raceway for...Ch. 7 - 76. ** Atwood machine Two blocks of masses hang...Ch. 7 - andm2 are connected with a string that passes over...Ch. 7 - of all species became extinct, ending the reign of...Ch. 7 - s cradle is a toy that consists of several metal...Ch. 7 - 81. ** Six Flags roller coaster A loop-the-loop on...Ch. 7 - ** Designing a ride You are asked to help design a...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 -
BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. In general, what kind of a terrestrial...
Cosmic Perspective Fundamentals
1. (I) A child sitting 1.20 m from the center of a merry-go-round moves with a speed of 1.10 m/s. Calculate (a)...
Physics: Principles with Applications
l. Suppose you have the uniformly charged cube in FIGURE Q24.1. Can you use symmetry alone to deduce the shape ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Why can a bird perch on a high-voltage power line without getting electrocuted?
Essential University Physics (3rd Edition)
Write each number in decimal form.
30. 3.78 × 10–2
Applied Physics (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sled and rider have a total mass of 56.8 kg. They are on a snowy hill. The coefficient of kinetic friction between the sled and the snow is 0.195. The angle of the hills slope measured upward from the horizontal is 19.5. What is the acceleration of the rider? Is the acceleration greater, less than, or equal to your result if a more massive rider uses the same sled on the same hill? Explain.arrow_forwardIn many textbook problems, we ignore certain complications such as friction and drag. The problems contain key words that indicate such a simplification is being used. For example, if a surface is described as slippery, it means that we can ignore friction. Look at the previous chapters problem sets. Find five uses of these key words and explain how to interpret each case.arrow_forwardCASE STUDY In the train collision case study (Chapter 5, page 119), we ignored the drag force on the trains. Estimate the drag on the trains and compare it to the kinetic friction on them. Is it okay to ignore drag? Explain.arrow_forward
- A block lies motionless on a horizontal tabletop. You apply a force Fapp horizontally to the block, but it does not move. What can you say about the relative sizes and magnitudes of Fapp, the static friction force between the block and the table, and the kinetic friction force between the block and the table?arrow_forwardStarting from rest, a rectangular toy block with mass 300 g slides in 1.30 s all the way across a table 1.20 m in length that Zak has tilted at an angle of 42.0 to the horizontal. a. What is the magnitude of the acceleration of the toy block? b. What is the coefficient of kinetic friction between the block and the table? c. What are the magnitude and direction of the friction force acting on the block? d. What is the speed of the block when it is at the end of the table, having slid a distance of 1.20 m?arrow_forwardA textbook rests on a movable wooden plank that is initially parallel to the ground. a. How does the normal force on the book compare to the gravitational force on the book as it rests in the horizontal position? b. If you push down on the book, what happens to the magnitude of the normal force as it rests in the horizontal position? c. The normal force on the book is part of a third-law interaction pair. Describe the third-law partner of this normal force.arrow_forward
- The drag coefficient C in FD=12CAv2 (Eq. 6.5) depends primarily on the shape of the object. You already have developed an intuition about what shapes correspond to a low C by observing the shapes of aerodynamic cars, boats, and even bullets. Which object, a sphere or a cube, would have a larger drag coefficient, assuming they are nearly the same size? Explain your reasoning. What aspect of an object most determines its drag coefficient?arrow_forwardA woman is standing on a steep hillside in the rain and is not moving. A sudden gust of wind blows down the hillside, which makes her worry that she might start sliding down the hill. However, the woman still does not slide. Which of the following statements explains why she does not slide down the hillside? A. The wind does not supply enough force to overcome the kinetic friction between the woman and the ground. B. The static friction between the woman and the ground increases as a result of the wind gust. C. The wind does not supply enough force to overcome the static friction between the woman and the ground. D. The kinetic friction between the woman and the ground increases as a result of the wind gust.arrow_forwardA person places a cup of coffee on the roof of her car while she dashes back into the house for a forgotten item. When she returns to the car, she hops in and takes off with the coffee cup still on the roof. You may want to review (Pages 156 - 163). Part A If the coefficient of static friction between the coffee cup and the roof of the car is 0.21, what is the maximum acceleration the car can have without causing the cup to slide? Ignore the effects of air resistance. Express your answer using two significant figures. a = m/s? Submit Request Answer • Part B What is the smallest amount of time in which the person can accelerate the car from rest to 27 m/s and still keep the coffee cup on the roof? Express your answer using two significant figures. ΑΣφ. t = Submit Request Answerarrow_forward
- When an object, such as a soccer ball or car, moves, the air that the object moves through tries to prevent the motion. The opposing force caused by the air an object moves through is often referred to as air resistance, or drag. A student is designing several experiments to determine what quantities affect how big is the drag force on a moving object. 1. The student hypothesizes that the drag force could be affected by how fast the object is moving (its speed), the object's mass, and the cross-sectional area of the object as it "faces into the wind," as illustrated in the figure. Falling Sphere Falling Brick 25 20 Cross-Section is a Circle 2. From their experiment, a student creates a graph showing how mass affects the drag force on an object. The student also writes a brief statement of what is the best math model (claim) for the data and why (evidence). Question: For the graph, do you agree or disagree with the student's claims and supporting evidence? Why or why not? Graph 3: 0 0…arrow_forwardM2arrow_forwardAn ice skater is traveling in a straight, horizontal line on the ice with a velocity of v = 7.5 m/s in the positive x-direction. The coefficient of kinetic friction between the skates and the ice is μk = 0.23. v=7.5 m/s uk= 0.23 Using the expression for normal force,write an expression for the skaters acceleration in the x-direction, aarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY