College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 18P
18. * BIO EST Heart pumps blood The heart does about 1 J of work while pumping blood into the aorta during each heartbeat. (a) Estimate the work done by the heart in pumping blood during a lifetime. (b) If all of that work was used to lift a person, to what height could an average person be lifted? Indicate any assumptions you used for each part of the problem.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
College Physics
Ch. 7 - Review Question 7.1 Assuming that Earths orbit...Ch. 7 - Review Question 7.2 A system can possess energy...Ch. 7 - Review Question 7.3 When we use the work-energy...Ch. 7 - Review Question 7.4 If the magnitude of the force...Ch. 7 - Review Question 7.5 Why, when friction cannot be...Ch. 7 - Review Question 7.6 What would change in the...Ch. 7 - Review Question 7.7 Imagine that a collision...Ch. 7 - Review Question 7.8 Toyota says that the power of...Ch. 7 - Review Question 7.9 In this section you read that...Ch. 7 - In which of the following is positive work done by...
Ch. 7 - 2. Which answer best represents the system’s...Ch. 7 - An Atwood machine is shown in Figure Q7.3. As the...Ch. 7 - Prob. 4MCQCh. 7 - 5. Three processes are described below. Choose one...Ch. 7 - 6. Choose which statement describes a process in...Ch. 7 - 7. Which example(s) below involve(s) zero physics...Ch. 7 - 8. Estimate the change in gravitational potential...Ch. 7 - What does it mean if object 1 does +10 J of work...Ch. 7 - You pull on a spring, which obeys Hookes law, in...Ch. 7 - The graph in Figure Q7.11 shows the time...Ch. 7 - 12. A 1400-kg car is traveling on a level road at...Ch. 7 - Prob. 13MCQCh. 7 - Two clay balls are moving toward each other. The...Ch. 7 - 15. Is energy a physical phenomenon, a model, or a...Ch. 7 - 16. Your friend thinks that the escape speed...Ch. 7 - Suggest how you can measure the following...Ch. 7 - How can satellites stay in orbit without any jet...Ch. 7 - Why does the Moon have no atmosphere, but Earth...Ch. 7 - What will happen to Earth if our Sun becomes a...Ch. 7 - 21. In the equation , the gravitational potential...Ch. 7 - 22. You push a small cart by exerting a constant...Ch. 7 - 1. Jay fills a wagon with sand (about 20 kg) and...Ch. 7 - 2. You have a 15-kg suitcase and (a) slowly lift...Ch. 7 - * You use a rope to slowly pull a sled and its...Ch. 7 - A rope attached to a truck pulls a 180-kg...Ch. 7 - 5. You lift a 25-kg child 0.80 m, slowly carry him...Ch. 7 - A truck runs into a pile of sand, moving 0.80 m as...Ch. 7 - 7. A 0.50-kg block is placed in a straight gutter...Ch. 7 - s up a smooth incline, which makes an angle with...Ch. 7 - 9. ** It is a windy day. You are moving a 20-kg...Ch. 7 - A 5.0-kg rabbit and a 12-kg Irish setter have the...Ch. 7 - Prob. 11PCh. 7 - * A pickup truck (2268 kg) and a compact car (1100...Ch. 7 - * When does the kinetic energy of a car change...Ch. 7 - * When exiting the highway, a 1100-kg car is...Ch. 7 - Prob. 15PCh. 7 - 16. * Flea jump flea pushes off a surface by...Ch. 7 - * Roller coaster ride A roller coaster car drops a...Ch. 7 - 18. * BIO EST Heart pumps blood The heart does...Ch. 7 - 19. * Wind energy Air circulates across Earth in...Ch. 7 - 20. * BIO Bone break The tibia bone in the lower...Ch. 7 - 21. * BIO EST Climbing Mt. Everest In 1953 Sir...Ch. 7 - 22. A door spring is difficult to stretch. (a)...Ch. 7 - * A moving car has 40,000 J of kinetic energy...Ch. 7 - 24. * The force required to stretch a slingshot by...Ch. 7 - Jim is driving a 2268-kg pickup truck at 20 m/s...Ch. 7 - 26. * A car skids 18 m on a level road while...Ch. 7 - s mass is m. An average friction force of...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - 30. In a popular new hockey game, the players use...Ch. 7 - 31. The top of a descending ski slope is 50 m...Ch. 7 - * If 20% of the gravitational potential energy...Ch. 7 - Prob. 33PCh. 7 - 34. A driver loses control of a car, drives off an...Ch. 7 - * You are pulling a box so it moves at increasing...Ch. 7 - s speed increases from zero to 4.0 m/s in a...Ch. 7 - 37. ** EST Hit by a hailstone A 0.030-kg hailstone...Ch. 7 - 38. * BIO Froghopper jump Froghoppers may be the...Ch. 7 - 39. * Bar chart Jeopardy 1 Describe in words and...Ch. 7 - * Bar chart Jeopardy 2 Describe in words and with...Ch. 7 - 41. * Equation Jeopardy 1 Construct a qualitative...Ch. 7 - * Equation Jeopardy 2 Construct a qualitative...Ch. 7 - Prob. 43PCh. 7 - 44. * Evaluation 2 Your friend provides a solution...Ch. 7 - 45. A crab climbs up a vertical rock with a...Ch. 7 - 46 * Work-energy bar charts for a person going...Ch. 7 - Prob. 47PCh. 7 - * A 1060-kg car moving west at 16 m/s collides...Ch. 7 - * You fire an 80-g arrow so that it is moving at...Ch. 7 - 50. * You fire a 50-g arrow that moves at an...Ch. 7 - * To confirm the results of Problem 7.50, you try...Ch. 7 - 52. * Somebody tells you that Figure P7.52 shows...Ch. 7 - 54. A roofing shingle elevator is lifting a...Ch. 7 - 55. (a) What is the power involved in lifting a...Ch. 7 - * A fire engine must lift 30 kg of water a...Ch. 7 - * BIO Internal energy change while biking You set...Ch. 7 - * Climbing Mt. Mitchell An 82-kg hiker climbs to...Ch. 7 - * BIO EST Sears stair climb The fastest time for...Ch. 7 - * BIO EST Exercising so you can eat ice cream You...Ch. 7 - 61. ** BIO Salmon move upstream In the past,...Ch. 7 - * EST Estimate the maximum horsepower of the...Ch. 7 - Prob. 63PCh. 7 - At what distance from Earth is the gravitational...Ch. 7 -
65. * Possible escape of different air molecule...Ch. 7 - Determine the escape speed for a rocket to leave...Ch. 7 - Determine the escape speed for an object to leave...Ch. 7 - If the Sun were to become a black hole, how much...Ch. 7 - * A satellite moves in elliptical orbit around...Ch. 7 - 70. * Determine the maximum radius Earth's Moon...Ch. 7 - 71. You throw a clay ball vertically upward. The...Ch. 7 - Prob. 72GPCh. 7 - Prob. 73GPCh. 7 - 74 * EST A “gravity force car” is powered by the...Ch. 7 - * Loop the loop You are given a loop raceway for...Ch. 7 - 76. ** Atwood machine Two blocks of masses hang...Ch. 7 - andm2 are connected with a string that passes over...Ch. 7 - of all species became extinct, ending the reign of...Ch. 7 - s cradle is a toy that consists of several metal...Ch. 7 - 81. ** Six Flags roller coaster A loop-the-loop on...Ch. 7 - ** Designing a ride You are asked to help design a...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 - BIO Metabolic rate Energy for our activities is...Ch. 7 -
BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...Ch. 7 - BIO Kangaroo hopping Hopping is an efficient...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
To measure the heat capacity of an object, all you usually have to do is put it in thermal contact with another...
An Introduction to Thermal Physics
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
27. An AC source is connected to a series combination of a lightbulb and a variable capacitor. If the capacitan...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the energy transfers and transformations listed below in parts (a) through (e). For each part, (i) describe human-made devices designed to pro-duce each of the energy transfers or transformations and, (ii) whenever possible, describe a natural process in which the energy transfer or transformation occurs. Give details to defend your choices, such as identifying the system and identifying other output energy if the device or natural process has limited efficiency. (a) Chemical potential energy transforms into internal energy. (b) Energy transferred by electrical transmission becomes gravitational potential energy. (c) Elastic potential energy transfers out of a system by heat. (d) Energy transferred by mechanical waves does work on a system. (e) Energy carried by electromagnetic waves becomes kinetic energy in a system.arrow_forwardExplorers in the jungle find an ancient monument in the shape of a large isosceles triangle as shown in Figure P9.25. The monument is made from tens of thousands of small stone blocks of density 3 800 kg/m3. The monument is 15.7 m high and 64.8 m wide at its base and is everywhere 3.60 m thick from front to back. Before the monument was built many years ago, all the stone blocks lay on the ground. How much work did laborers do on the blocks to put them in position while building the entire monument? Note: The gravitational potential energy of an objectEarth system is given by Ug = MgyCM, where M is the total mass of the object and yCM is the elevation of its center of mass above the chosen reference level.arrow_forwardThe awe-inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high, with a mass of about 7109 kg. (The pyramid's dimensions are slightly different today due to quarrying and some sagging.) Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year. (a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height. (b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps (see Figure 7.45), bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 kcal/h. What does your answer imply about how much of their work went into block-lifting, versus how much work went into friction and lifting and lowering their own bodies? (c) Calculate the mass of food that had to be supplied each day, assuming that the average worker required 3600 kcal per day and that their diet was 5% protein, 60% carbohydrate, and 35% fat. (These proportions neglect the mass of bulk and non-digestible materials consumed.) Figure 7.45 Ancient pyramids were probably constructed using ramps as simple machines. (credit: Franck Monnier, Wikimedia Commons)arrow_forward
- Confirm the value given for the kinetic energy of an aircraft carrier in Table 7.1. You will need to look up the definition of a nautical mile (1knot=1nauticalmile/h) .arrow_forwardAnswer yes or no to each of the following questions. (a) Can an objectEarth system have kinetic energy and not gravitational potential energy? (b) Can it have gravitational potential energy and not kinetic energy? (c) Can it have both types of energy at the same moment? (d) Can it have neither?arrow_forwardIntegrated Concepts (a) Calculate the force the woman in Figure 7.46 exerts to do a push-up at constant speed, taking all data to be known to three digits. (b) How much work does she do if her center of mass rises 0.240 m? (c) What is her useful power output if she does 25 push-ups in 1 min? (Should work done lowering her body be included? See the discussion of useful work in Work, Energy, and Power in Humans. Figure 7.46 Forces involved in doing push-ups. The woman's weight acts as a force exerted downward on her center of gravity (CG).arrow_forward
- Alex and John are loading identical cabinets onto a truck. Alex lifts his cabinet straight up from the ground to the bed of the truck, whereas John slides his cabinet up a rough ramp to the truck. Which statement is correct about the work done on the cabinetEarth system? (a) Alex and John do the same amount of work. (b) Alex does more work than John. (c) John does more work than Alex. (d) None of those statements is necessarily true because the force of friction is unknown. (e) None of those statements is necessarily true because the angle of the incline is unknown.arrow_forwardAlex and John are loading identical cabinets onto a truck. Alex lifts his cabinet straight up from the ground to the bed of the truck, whereas John slides his cabinet up a rough ramp to the truck. Which statement is correct about the work done on the cabinet-Earth system? (a) Alex and John do the same amount of work, (b) Alex does more work than John, (c) John does more work than Alex, (d) None of those statements is necessarily true because the force of friction is unknown, (e) None of those statements is necessarily true because the angle of the incline is unknown.arrow_forward(a) A child slides down a water slide at an amusement park from an initial height h. The slide can be considered frictionless because of the water flowing down it. Can the equation for conservation of mechanical energy be used on the child? (b) Is the mass of the child a factor in determining his speed at the bottom of the slide? (c) The child drops straight down rather than following the curved ramp of the slide. In which case will he be traveling faster at ground level? (d) If friction is present, how would the conservation-of-energy equation be modified? (e) Find the maximum speed of the child when the slide is frictionless if the initial height of the slide is 12.0 m.arrow_forward
- In the general conservation of energy equation, state which terms predominate in describing each of the following devices and processes. For a process going on continuously, you may consider what happens in a 10-s time interval. State which terms in the equation represent original and final forms of energy, which would be inputs, and which outputs. (a) a slingshot firing a pebble (b) a fire burning (c) a portable radio operating (d) a car braking to a stop (e) the surface of the Sun shining visibly (f) a person jumping up onto a chair Figure CQ8.5arrow_forwardObject 1 pushes on object 2 as the objects move together, like a bulldozer pushing a stone. Assume object 1 does 15.0 J of work on object 2. Does object 2 do work on object lr Explain your answer. If possible, determine how much work and explain your reasoning.arrow_forwardThe kinetic energy of a system must always be positive or zero. Explain whether this is true for the potential energy of a system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY